• Title/Summary/Keyword: Transition Nozzle

Search Result 83, Processing Time 0.026 seconds

Development of an Ejector System for Operation of Chemical Lasers (II) - Optimal Design of the Second-Throat Type Annular Supersonic Ejector - (화학레이저 구동용 이젝터 시스템 개발 (II) - 이차목 형태의 환형 초음속 이젝터 최적 설계 -)

  • Kim Sehoon;Jin Jungkun;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1231-1237
    • /
    • 2004
  • Determination of geometric design parameters of a second-throat type annual supersonic ejector is described. Tested geometric parameters were primary nozzle area ratio, cross-sectional area of second-throat, L/D ratio of second-throat and primary flow injection angle. Varying these four geometric parameters, we build a test matrix made of 81 test conditions, and experimental apparatus was fabricated to accommodate them. For each test condition, the stagnation pressure of primary flow and the static pressure of the secondary flow were measured simultaneously along with their transition to steady operation and finally to unstarting condition. Comparing the performance curve of every case focused on starting pressure, the unstarting pressure and the minimum secondary pressure, we could derive correlations that the parameters have on the performance of the ejector and presented the optimal design method of the ejector. Additional experiments were carried out to find effects of temperature and mass flow rate of the secondary flow.

Identification of Internal Flow Pattern in Effervescent Atomizers (기체주입노즐의 내부유동양식의 구분)

  • Kim, Joo-Youn;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.306-315
    • /
    • 2000
  • An experimental study was conducted to examine the internal flow patterns inside the mixing chamber of effervescent atomizers. The mixing chamber has the rectangular cross section ($8mm{\times}2mm$) and made of transparent acrylic plate for flow visualization. The parameters tested were the air/liquid ratio (ALR), injection. pressure, and the nozzle orifice diameter. Three different flow regimes were observed; bubbly, annular, and intermittent flows. In the bubbly flow regime, the discharged mixture was disintegrated into drops through the bubble expansion and the ligament breakup. On the other hand, in the annular flow regime, the liquid annulus was disintegrated into small drops by the aerodynamic interaction between the phases due to the high relative velocities between the gas and the liquid. In the intermittent flow regime, the bubble-expansion/ligament-disintegration mode and the annulus-disintegration mode appeared alternatively. The correlations representing the transition criteria between the two-phase flow patterns within the mixing chamber were proposed based on the drift-flux models.

Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique (레이저형광여기(LIF)를 이용한 비등온 제트유동의 온도장 측정)

  • Yoon, Jong-Hwan;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1399-1408
    • /
    • 2000
  • A 2-dimensional temperature field measurement technique using PLIF (Planar Laser Induced Fluorescence) was developed and it was applied to an axisymmetric buoyant jet. Rhodamine B was used as a fluorescent dye. Laser light sheet illuminated a two-dimensional cross section of the jet. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured with an optical filter and a CCD camera. The spatial variations of temperature field of buoyant jet were derived using the calibration data between the LIF signal and real temperature. The measured results show that the turbulent jet is more efficient in mixing compared to the transition and laminar jet flows. As the initial flow condition varies from laminar to turbulent flow, the entrainment from ambient fluid increases and temperature decay along the jet center axis becomes larger. In addition to the mean temperature field, the spatial distributions of temperature fluctuations were measured by the PLIF technique and the result shows the shear layer development from the jet nozzle exit.

A Study on the Ignition and Combustion Characteristics During the Transition from the Rocket Booster to Ramjet Sustainer (램제트 천이 시 점화 및 연소 특성 연구)

  • Yoon, Jae-Kun;Yoon, Hyun-Gull;Gil, Hyun-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.996-999
    • /
    • 2011
  • The flow and combustion dynamics in the ignition and ramjet sustainer phase of an integrated rocket-ramjet(IRR) engine are investigated. The physical model includes the entire engine flowpath, from the freestream in front of the inlet to the exit of the exhaust nozzle. The flowfield obtained from a rocket booster study is used as the initial condition for the present analysis, so that the complete operation history of the engine can be obtained. The analysis for the primary factor governing flame propagation during the ignition and the key mechanisms for driving and sustaining the flow oscillations are performed.

  • PDF

Numerical Investigation of the Effects of an Orifice Inlet on the Performance of an Ejector (Orifice Inlet효과에 의한 이젝터 성능에 관한 수치해석적 연구)

  • Lijo, Vincent;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.318-322
    • /
    • 2009
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and/or recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for altitude testing of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser. This paper aims at the improvement of ejector-diffuser performance by focusing attention on reducing exhaust back flow into the test chamber, since alteration of the backflow or recirculation pattern appears as one of the potential means of significantly improving low supersonic ejector-diffuser performance. The simplest backflow-reduction device was an orifice plate at the duct inlet, which would pass the jet and entrained fluid but impede the movement of fluid upstream along the wall. Results clearly showed that the performance of ejector-diffuser system was improved for certain a range of system pressure ratios, where as there was no appreciable transition in the performance for lower pressure ratios and the orifice plate was detrimental to the ejector performance for higher pressure ratios. It is found that an appropriately sized orifice system should produce considerable improvement in the ejector-diffuser performance in the intended range of pressure ratios.

  • PDF

Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon (후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구)

  • 이상용;송시홍;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.833-846
    • /
    • 1988
  • Two-phase flow heat transfer phenomena with flash evaporation inside a vertical tube were studied experimentally. Void fractions were measured using electrical probes, and the flow patterns were identified from the output voltage signal itself. The flow pattern as well as the beat transfer rates were changing along the axial distance from the tube inlet with the system pressure. As the pressure inside the tube decreases with fixed inlet temperature, the overall heat transfer coefficient through the tube wall and the boiling heat transfer coefficient inside the tube increase whereas the condensation heat transfer coefficient outside the tube decreases. The boiling heat transfer coefficient inside the tube measured by the experiments appeared to be somewhat larger than the value obtained from the Chen's correlation. Also, the flow patterns identified from present experiments are at the larger quality region of the low pattern map based on the transition criteria of Mishima and Ishii. This may be due to the non-equilibrium flashing phenomenon occurred at the nozzle exit and the tube inlet ; this also implies that the flow pattern of the two-phase flow depends strongly on the inlet conditions.

A Study on Combustion Characteristics of Methane Fuel according to Torch Nozzle Diameter in a Constant Volume Combustion Chamber (정적연소기에서 토치의 노즐 직경에 따른 메탄의 연소특성 파악)

  • Lee, Jung-Man;Kwon, Soon-Tae;Park, Chan-Jun;Ohm, In-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Five different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass burned fraction and combustion enhancement rate. The combustion pressures were measured to calculate the mass burned fractions and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

Experimental Investigation on the Breakup Characteristics of Various Fuels in air Cross-flow Condition (연료 물성에 따른 횡단 유동장 내의 액적 분열 특성에 관한 실험적 연구)

  • Kim, Sa-Yop;Lee, Keun-Hee;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • In this study, the breakup characteristics of mono disperse droplets were studied with various fuels, ethanol, diesel fuel, biodiesel fuel extracted from soybean oil, and pure water. In order to investigate the droplet behavior in air cross-flow conditions, the experimental equipment was composed of a droplet generator with an air nozzle, and a high-magnification photo detecting system. Droplets produced by the droplet generator were injected into the air stream flowing normal to a direction of liquid drop jet. Digital images of the droplet behavior in air flow field were recorded by controlling the air flow rate. From the inspections, droplet breakup mechanism is primarily classified into the two kinds of stage, first breakup stage and second breakup stage. At the first breakup stage, droplet deformation rate seems to be affected by the force induced by the surface tension and the viscosity. On the other hand, at the second breakup stage, droplet is broken up mainly induced by the surface tension, so the breakup transition can be divided by the regular Weber number.

  • PDF

Numerical Analysis of Variations of Laser Parameters in DF Chemical Laser According to Pressure Ratio (불화중수소 화학레이저의 연료 및 산화제 분사 압력비에 따른 레이저 발진 성능 특성 변화에 관한 수치적 연구)

  • Park Jun Sung;Baek Seung Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.9-12
    • /
    • 2004
  • A numerical simulation is presented for investigating the effects of pressure ratio of $D_2$ injector to supersonic nozzle on the Population inversion in the DF chemical laser cavity, while a latins concurrently takes place. In this study, these phenomena are investigated by means of analyzing the distributions of the DF excited molecules, while simultaneously estimating the maximum small signal gains and power in the DF chemical laser cavity. Major results reveal that the higher $D_2$ injection pressure provides a favorable condition for $DF^{(1)}$-$DF^{(0)}$ transition to generate the higher power laser beam.

  • PDF

Behaviors of Premixed Flames and Triple Flames with its Concentration Difference in a Slot Burner (슬롯버너에서 농도차이에 따른 예혼합화염과 삼지화염의 거동)

  • Kim, Tae-Kwon;Jang, Jun-Young;Park, Jeong;Jun, Seong-Hwa;Miwa, Kei
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.85-90
    • /
    • 2004
  • We have presented characteristics of a transitional behavior from a premixed flame to a triple flame in a lifted flame according to the change of equivalence ratio. The experimental apparatus consisted of a slot burner and a contraction nozzle for a lifted flame. As concentration difference of the both side of slot burner increases, the shape of flame changed from a premixed flame to a triple flame, and the liftoff height is decreased to the minimum value and then increase again. Around this minimum point, it is confirmed a transition regime from premixed flame to triple flame. Consequently, the experimental results of the liftoff height, flame curvature and luminescence intensity showed that the stabilized laminar lifted flame regime is categorized by regimes of premixed flame, triple flame and critical flame. In the visualization experiment of smoke wire, the flow divergence and redirection reappeared in premixed flame as well as triple flame. Thus we cannot express the flame front of lifted flame has a behavior of triple flame with only flow divergence and redirection. To differentiate triple flame and premixed flame, ${\Phi}$ value of partially premixed fraction is employed. The partially premixed fraction ${\Phi}$ was constant in premixed flame. In critical flame small gradient appears over the whole regime. In triple flame, typical diffusion flame shape is obtained as parabolic distribution type due to diffusion flame trailing.

  • PDF