• Title/Summary/Keyword: Transit dose

Search Result 47, Processing Time 0.022 seconds

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Kim, Dong Wook
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1571-1576
    • /
    • 2018
  • We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).

Feasibility Study of Patient Specific Quality Assurance Using Transit Dosimetry Based on Measurement with an Electronic Portal Imaging Device

  • Baek, Tae Seong;Chung, Eun Ji;Son, Jaeman;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.54-60
    • /
    • 2017
  • This study was designed to measure transit dose with an electronic portal imaging device (EPID) in eight patients treated with intensity modulated radiotherapy (IMRT), and to verify the accuracy of dose delivery to patients. The calculated dose map of the treatment planning system (TPS) was compared with the EPID based dose measured on the same plane with a gamma index method. The plan for each patient was verified prior to treatment with a diode array (MapCHECK) and portal dose image prediction (PDIP). To simulate possible patient positioning errors during treatment, outcomes were evaluated after an anthropomorphic phantom was displaced 5 and 10 mm in various directions. Based on 3%/3 mm criteria, the $mean{\pm}SD$ passing rates of MapCHECK, PDIP (pre-treatment QA) for 47 IMRT were $99.8{\pm}0.1%$, $99.0{\pm}0.7%$, and, respectively. Besides, passing rates using transit dosimetry was $90.0{\pm}1.5%$ for the same condition. Setup errors of 5 and 10 mm reduced the mean passing rates by 1.3% and 3.0% (inferior to superior), 2.2% and 4.3% (superior to inferior), 5.9% and 10.9% (left to right), and 8.9% and 16.3% (right to left), respectively. These findings suggest that the transit dose-based IMRT verification method using EPID, in which the transit dose from patients is compared with the dose map calculated from the TPS, may be useful in verifying various errors including setup and/or patient positioning error, inhomogeneity and target motions.

Three dimensional Dose reconstruction based on transit dose measurement and Monte Carlo calculation (조사문 선량 분포와 Monte Carlo 계산을 이용한 삼차원 선량 재구성에 관한 연구)

  • Park, Dal;Yeo, In-Hwan;Kim, Dae-Yong;An, Yong-Chan;Heo, Seung-Jae
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 2000
  • This is a preliminary study for developing the method of the dose reconstruction in the patients, irradiated by mega-voltage photon beams from the linear accelerator, using the transit dose distributions. In this study we present the method of three-dimensional dose reconstruction and evaluate the method by computer simulation. To acquire the dose distributions in the patients (or phantoms) we first calculate the differences between the doses at the arbitrary points in the patients and the doses at the corresponding points where the transit doses are measured. Then, we can get the dose in the patients from the measured transit dose and the calculated value of the difference. The dose differences are calculated by applying the inverse square law and using the linear attenuation coefficient. The scatter to primary dose ratios, which are calculated by the Monte Carlo program using the CT data of the patient (or phantoms), are also used in the calculations. For the evaluation of this method we used various kinds of homogeneous and inhomogeneous phantoms and calculated the transit dose distributions with the Monte Carlo program. From the distributions we reconstructed the dose distributions in the phantom. We used mono-energy Photon beam of 1.5MeV and Monte Carlo program EGS4. The comparison between the dose distributions reconstructed using the method and the distributions calculated by the Monte Carlo program was done. They agreed within errors of -4%∼+2%. This method can be used to predict the dose distributions in the patient

  • PDF

Development of Dose Verification Method for In vivo Dosimetry in External Radiotherapy (방사선치료에서 투과선량을 이용한 체내선량 검증프로그램 개발)

  • Hwang, Ui-Jung;Baek, Tae Seong;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The purpose of this study is to evaluate the developed dose verification program for in vivo dosimetry based on transit dose in radiotherapy. Five intensity modulated radiotherapy (IMRT) plans of lung cancer patients were used in the irradiation of a homogeneous solid water phantom and anthropomorphic phantom. Transit dose distribution was measured using electronic portal imaging device (EPID) and used for the calculation of in vivo dose in patient. The average passing rate compared with treatment planning system based on a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 95% for the in vivo dose with the homogeneous phantom, but was reduced to 81.8% for the in vivo dose with the anthropomorphic phantom. This feasibility study suggested that transit dose-based in vivo dosimetry can provide information about the actual dose delivery to patients in the treatment room.

Correlation between Colon Transit Time Test Value and Initial Maintenance Dose of Laxative in Children with Chronic Functional Constipation

  • Kim, Mock Ryeon;Park, Hye Won;Son, Jae Sung;Lee, Ran;Bae, Sun Hwan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.3
    • /
    • pp.186-192
    • /
    • 2016
  • Purpose: To evaluate the correlation between colon transit time (CTT) test value and initial maintenance dose of polyethylene glycol (PEG) 4000 or lactulose. Methods: Of 415 children with chronic functional constipation, 190 were enrolled based on exclusion criteria using the CTT test, defecation diary, and clinical chart. The CTT test was performed with prior disimpaction. The laxative dose for maintenance was determined on the basis of the defecation diary and clinical chart. The Shapiro-Wilk test and Pearson's and Spearman's correlations were used for statistical analysis. Results: The overall group median value and interquartile range of the CTT test was 43.8 (31.8) hours. The average PEG 4000 dose for maintenance in the overall group was $0.68{\pm}0.18g/kg/d$; according to age, the dose was $0.73{\pm}0.16g/kg/d$ (<8 years), $0.53{\pm}0.12g/kg/d$ (8 to <12 years), and $0.36{\pm}0.05g/kg/d$ (12 to 15 years). The dose of lactulose was $1.99{\pm}0.43mL/kg/d$ (<8 years) or $1.26{\pm}0.25mL/kg/d$ (8 to <12 years). There was no significant correlation between CTT test value and initial dose of laxative, irrespective of the subgroup (encopresis, abnormal CTT test subtype) for either laxative. Even in the largest group (overall, n=109, younger than 8 years and on PEG 4000), the correlation was weak (Pearson's correlation coefficient [R]=0.268, p=0.005). Within the abnormal transit group, subgroup (n=73, younger than 8 years and on PEG 4000) correlation was weak (R=0.267, p=0.022). Conclusion: CTT test value cannot predict the initial maintenance dose of PEG 4000 or lactulose with linear correlation.

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

Effects of Dried Gentiana scabra Rhizomes and Roots on the Intestinal Transit Rate of Mice with Experimental Gastrointestinal Motility Dysfunctions (용담 열수 추출물이 위장관 운동 기능 저해 상황에서 위장관 이송률에 미치는 영향)

  • Lee, Hyun-Tai
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1345-1350
    • /
    • 2019
  • Our recent study has revealed that in vivo intestinal transit rate (ITR) in normal mice was significantly increased by the administration of an aqueous extract of dried Gentiana scabra rhizomes and roots (GS-W) in a dose-dependent manner. Following on from our previous study, the effect of GS-W on ITR was measured in mice with experimentally induced gastrointestinal motility dysfunctions (GMDs) in the present study. GS-W showed no significant acute toxicity even at an oral dose of 5 g/kg to mice. ITR was significantly retarded in the GMD mice compared with that in normal mice, and this retardation was significantly recovered by the oral administration of GS-W in a dose-dependent manner. Furthermore, the ITR value of GS-W at a dose of 1 g/kg appeared to be higher than that of cisapride, which was predominantly prescribed for human patients with various GMDs in the late 1900s but was withdrawn from the market in 2000 due to its fatal side effects. The current results suggest that GS-W is a potential substitute for cisapride to prevent or alleviate human GMDs.

Evaluation of Antidiarrhoeal Activity of Aerva species

  • Joanofarc, J.;Vamsadhara, C.
    • Natural Product Sciences
    • /
    • v.9 no.3
    • /
    • pp.177-179
    • /
    • 2003
  • The genus Aerva is distributed is temperate and stropical Asia and Africa. Aerva species, Aerva lanata and Aerva javanica have been used for antidiarrhoeal activity in Indian traditional medicine. A.lanata and A.javanica were screened separately for their. anti-diarrhoeal activity and their action on intestinal transit on their vacuum dried ethanolic and aqueous extracts at the dose of 800 mg/kg by standard methods. All the extracts showed significant antidairrhoeal activity and significantly reduced intestinal transit in charcoal meal test. The results illustrate that the ethanolic and aqueous extracts of A.lanata and the ethanolic and aqueous extracts of A.javanica have significant antidiarrhoeal activity and the activity may be attributed to its effect on intestinal transit. The present study supports the claim of Aerva lanata and Aerva javanica as antidiarrhoeal drugs in the Indian system of medicine.

The Effect of Dietary Pectin on the Upper Gastrointestinal Transit Rate in Rats (흰쥐에 있어서 펙틴이 식이의 상부소화관내 이동 속도에 미치는 영향)

  • Kim, Jung-In
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.6
    • /
    • pp.627-632
    • /
    • 1992
  • The effect of dietary pectin in the upper gastrointestinal transit rate was studied. Rats fed fiber-free diet or 10% pectin diet were offered 51-$CrCl_3,$ a transit marker. The movement of 51-Cr dose through the gastrointestinal tract was measured at intervals from 20 minutes to 6 hours after dosing. pectin significantly increased gastric emptying rate upto 3 hours after dosing. Pectin also increased small intestinal transit rate from 3 hours to 4 hours after dosing. The results suggest that delayed gastric emptying is not likely the important aspect of the mechanism by which pectin could flatten the post-prandial response of serum glucose and insulin.

  • PDF

The Effects of Jungri-tang Gamibang on Carbachol-accelerated Mouse Small Intestinal Transit

  • Kim, Dae-Jun;Byun, Joon-Seok
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.9-16
    • /
    • 2009
  • Objectives: To clarify the effects of Jungri-tang Gamibang on accelerating small intestinal movement induced by the stimulation of cholinergic neurotransmission. Methods: 500, 250 and 125mg Jungri-Tang Gamibang or 20mg domperidone were dissolved or suspended in distilled water and orally pretreated on the carbachol-accelerated small intestinal transit mice once a day for 7 days at a volume of 10ml/kg (of body weight) using a Zonde needle attached to 1 ml syringes containing test drugs. Result: Significantly (p<0.01) increase of % regions of activated charcoal transit in the small intestine was detected in carbachol control compared to that of intact control. However, significant (p<0.01) decreases of % regions of activated charcoal transit were dose-dependently observed in all Jungri-Tang Gamibang extracts or domperidone-pretreated groups. Conclusions: it was concluded that Jungri-tang Gamibang enhancement in the normal intestinal motility and normalization in the accelerated intestinal motility might interfere with a variety of muscarinic, adrenergic and histaminic receptor activities or with the mobilization of calcium ions required for smooth muscle contraction non-specifically.

  • PDF