• Title/Summary/Keyword: Transient-flow

Search Result 1,138, Processing Time 0.024 seconds

Numerical Simulation on Hydrodynamic Characterization Changes Associated with the Construction of Dikes and Dredging Operations in Saemangeum Lake (새만금호 내 방수제 공사 및 준설에 의한 수리동역학적 특성 변화 수치 모델링)

  • Oh, Chan-Sung;Choi, Jung-Hoon;Cho, Young-Kweon
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1115-1129
    • /
    • 2013
  • The study area is located on the western coast, and the inner development construction has been ongoing since 2011. The purposes of current study are to effectively simulate and quantitatively predict a temporal and spatial distributions of water temperature and salinity due to the stages of inner development construction in saemangeum reclaimed area. The transient-state numerical modeling using EFDC model is done, and the numerical simulation results are validated reasonably by repetitive numerical model calibration procedures with respect to field measurements of water temperature and salinity. The spatial distributions of water temperature and salinity show similar trends before and after construction of the dikes. In spring season, the salinity has maximum value of 21 psu, while, in summer season, the salinity shows 7 psu in a whole modeling domain. Thus, it is clearly observed that salt water is replaced by freshwater. However, the salinity and temperature reach their initial conditions at the end of the year. The salinity after construction of the dikes is lower than that before construction of them at Mankyeong area. On the other hands, after construction of the dikes, the salinity after dredging operations is higher than that before dredging. Because drastical increasing of water volume in Saemangeum Lake leads to increasing of stagnation time at bottom layer, and salt water is easily intruded to the two estuaries. Therefore, it may be concluded that hydrodynamic characteristics on Saemangeum are dominated by either Mankyeong and Dongjin discharge or sluice gates in/out-flow amounts, and thus they must be properly considered when rigorous and reasonable predictions of water temperature and salinity according to the stages of inner development construction.

Study on a Noval Simulation Method of Wind Power Generation System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전시스템의 새로운 시뮬레이션 방법에 관한 연구)

  • 한상근;박민원;유인근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.307-315
    • /
    • 2003
  • This paper proposes a novel simulation method of WPGS (Wind Power Generation System). The rotation speed control method of turbine under variable wind speed using the pitch control is proposed. Moreover, when wind speed exceeds the cut-out wind speed, the turbine will be stopped by controlling pitch angle to 90$^{\circ}$, otherwise it will be controlled to steady-state operation. For the purpose of effective simulation, the SWRW (Simulation method for WPGS using Real Weather condition) is used for the utility interactive WPGS simulation in this paper, in which those of three topics for the WPGS simulation: user-friendly method, applicability to grid-connection and the utilization of the real weather conditions, are satisfied. It is impossible to consider the real weather conditions in the WPGS simulation using the EMTP type of simulators and PSPICE, etc. External parameter of the real weather conditions is necessary to ensure the simulation accuracy. The simulation of the WPGS using the real weather conditions including components modeling of wind turbine system is achieved by introducing the interface method of a non-linear external parameter and FORTRAN using PSCAD/EMTDC in this paper. The simulation of long-term, short-term, over cut-out and under cut-out wind speeds will be peformed by the proposed simulation method effectively. The efficiency of wind power generator, power converter and flow of energy are analyzed by wind speed of the long-term simulation. The generator output and current supplied into utility can be obtained by the short-term simulation. Finally, transient-state of the WPGS can be analyzed by the simulation results of over cut-out and under cut-out wind speeds, respectively.

Possible Changes of East Asian Summer Monsoon by Time Slice Experiment (Time Slice 실험으로 모의한 동아시아 여름몬순의 변화)

  • Moon, JaYeon;Kim, Moon-Hyun;Choi, Da-Hee;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

Wearing Performance of Garment for Emotional Knitted Fabrics Made of PTT/Tencel/Cotton MVS Blended Yarns (II) (PTT/Tencel/Cotton 친환경 MVS 혼방사 편성물의 물성에 관한 연구 (II))

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.1020-1029
    • /
    • 2015
  • This paper investigated the wearing performance of knitted fabrics made of air vortex yarns using PTT/tencel/cotton fibres in comparison with ring and compact yarns for emotional garment. Wicking property of knitted fabric made of MVS yarns was worse than those by ring and compact yarns, however, drying property of knitted fabric made of MVS yarns was better than those by ring and compact yarns, which was explained as more water vapor transport due to larger openness between fibres in the MVS yarns than those in the ring and compact yarns. Thermal conductivity of knitted fabric made of MVS was lower than those of ring and compact yarns and maximum heat flow(Qmax) at the transient state of MVS knitted fabric was lower than those of ring and compact yarns, which may be attributed to MVS yarn structure that has parallel fibres in the core part of the yarn and fasciated fibre bundles on the sheath part with roughness on the yarn surface. However, pilling of MVS knitted fabric was better than those by ring and compact yarns, which was caused by less and shorter hairy fibres protruded from MVS yarn surface than those of ring and compact yarns. It was observed that tactile hand of MVS yarn knitted fabrics was stiffer than those of ring and compact yarns knitted fabrics. It was explained by low extensibility and compressibility and high bending and shear rigidities of the MVS yarn knitted fabrics, which resulted in bad wearing performance of MVS knitted fabric.

Conformational changes of short, discrete Rouse chain during creep and recovery processes

  • Watanabe, Hiroshi;Inoue, Tadashi
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.91-99
    • /
    • 2004
  • For the Rouse chain composed of infinite number of beads (continuous limit), conformational changes during the creep and creep recovery processes was recently analyzed to reveal the interplay among all Rouse eigenmodes under the constant stress condition (Watanabe and Inoue, Rheol. Acta, 2004). For completeness of the analysis of the Rouse model, this paper analyzes the conformational changes of the discrete Rouse chain having a finite number of beads (N = 3 and 4). The analysis demonstrates that the chain of finite N exhibits the affine deformation on imposition/removal of the stress and this deformation gives the instantaneous component of the recoverable compliance, $J_{R}$(0) = 1/(N-l)v $k_{B}$T with v and $k_{B}$ being the chain number density and Boltzmann constant, respectively. (This component vanishes for N\longrightarrow$\infty$.) For N = 2, it is known that the chain has only one internal eigenmode so that the affinely deformed conformation at the onset of the creep process does not change with time t and $J_{R}$(t) coincides with $J_{R}$(0) at any t (no transient increase of $J_{R}$(t)). However, for N$\geq$3, the chain has N-l eigenmodes (N-l$\geq$2), and this coincidence vanishes. For this case, the chain conformation changes with t to the non-affine conformation under steady flow, and this change is governed by the interplay of the Rouse eigenmodes (under the constant stress condition). This conformational change gives the non-instantaneous increase of $J_{R}$(t) with t, as also noted in the continuous limit (N\longrightarrow$\infty$).X>).TEX>).X>).

A study on the Measurement of Soil Water Concentration by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양수농도 측정에 관한 연구)

  • Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.123-132
    • /
    • 1998
  • Monitoring solute transport has been known to be difficult especially for the unsaturated soil. The object of this study is to investigate the TDR application to monitoring solute concentration in the vadose zone. The TDR calibration test was conducted for soil samples with various water contents and concentrations. The voltage attenuation of electromagnetic wave of TDR was used to estimate the bulk electrical conductivity of a soil. The relationship between the bulk soil electrical conductivity and the solute concentration was assumed to be linear at a constant volumetric soil water content. In this study four proposed relationships were compared using data obtained from KCI solution at three different concentrations. Relationships given by Topp, Daltaon, Yanuka showed the linearity between the bulk soil electrical conductivity and the solute concentration, which were more pronounced than Zegelin's. The three relationships were found to be useful to measure the solute concentration in the vadose zone. In addition, TDR method was proven to be a viable technique in monitoring solute transport through unsaturated soils in transient flow condition.

  • PDF

A High Voltage Poorer Supply for Electrostatic Precipitator with Superimposing Voltage Pulse on DC Source (펄스 및 직류 중첩형 전기집진기용 고전압 전원장치 개발 연구)

  • Kim, Jong-Soo;Rim, Geun-Hie;Lee, Sung-Jin;Kim, Seung-Min;Cho, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.624-630
    • /
    • 2001
  • The trend of the regulations on environmental issues are getting tight. Responding to this trend new technologies such as moving electrodes, wide pitch and pulsed power supply are also introduced in the electrostatic precipitator(EP) systems. The introduction of wide pitch and moving electrodes enhances the system performance of the EPs by improving air-flow and by improving the ash reentrainment on rapping. The power supplies for the EPs developed up to date include thyristor-based dc or intermittent type, SMPS(switching mode power supply) type and the pulsed-power supply type. The use of the pulsed ones is known to improve dust-collecting efficiency of high resistivity ash and reduces back corona occurrence in the collecting plate. There are two kinds of pulsed-power supplies; one with pulsed transformers and the other with direct dc switching devices. The latter uses rotary spark gap switches or semiconductor switches. Both have the merits and demerits: the spark gap switches are simple and robust but has short life time, hence, high maintenance cost, whereas the semiconductor switches have long life time but are costly. In this study, A high voltage power supply with superimposing voltage pulse on dc source was developed for EPs. This study describes circuit topology, operating principle of the scheme, and analysis of experimental results on Dong-Hae Power Plant. The pulsed power supply consists of a variable dc power supply with ratings of 60kV, 800mA and pulse generator which is made of high voltage thyristor-diode switch strings, an LC resonant tank and a blocking inductor. The pulse generator generates variable pulse-voltage up to 70kV using a high frequency resonant inverter with a variable dc source. Two prototypes were built and tested on 250MW DongHae power plant to verify the possibility of the commercial use and the normal operation in the transient states.

  • PDF

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.