• Title/Summary/Keyword: Transient model

Search Result 1,977, Processing Time 0.025 seconds

Development of the Dynamic Simulation Program for the Multi-Inverter Heat Pump Air-Conditioner (멀티 인버터 히트펌프의 동특성 해석 프로그램의 개발)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1079-1088
    • /
    • 2001
  • A dynamic simulation model was developed to analyse the transient characteristics of a multi-inverter heat pump. The programs included a basic air conditioning system such as a evaporator, condenser, compressor, linear electronic expansion valve (LEV) and by-pass circuit. The theoretical model was derived from mass conservation and energy conservation equations to predict the performance of the multi-inverter heat pump at various operating conditions. Calculated results were compared with the values obtained from the experiments at different operation frequencies of compressor, area of the LEV and configuration of indoor units operation. The results of the simulation model showed a good agreement with the experimental ones, so that the model could be used as an efficient tool for thermodynamic design and control factor design of air-conditioners.

  • PDF

A Development of a Transient Hydrogen Generation Model for Metal-Water Interactions

  • Lee, Jin-Yong;Park, Goon-Cherl;Lee, Byung-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.549-558
    • /
    • 2000
  • A transient model for hydrogen generation in molten metal-water interactions was developed with separate models for two stages of coarse mixing and stratification. The model selves the mechanistic equations (heat and mass transfer correlation, heat conduction equation and the concentration diffusion equation) of each stage with non-zero boundary conditions. Using this model, numerical simulations were performed for single droplet experiments in the Argonne National Laboratory tests and for FITS tests that simulated dynamic fragmentation and stratification. The calculation results of hydrogen generation showed better agreement to the experiment data than those of previous works. It was found from the analyses that the steam concentration to be reached at the reaction front might be the main constraint to the extent of the metal droplet oxidized. Also, the hydrogen generation rate in the coarse mixing stage was the higher than that in the stratification stage. The particle size was the most important factor in the coarse mixing stage to predict the amount of hydrogen generation.

  • PDF

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

Adaptive controller with fast convergence

  • Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.746-748
    • /
    • 1988
  • A way of improving the transient performance is suggested for a class of model reference adaptive control systems. To increase the convergence rate of a model following error, an error feedback term is incorporated into the control law.

  • PDF

Development of Analytical Models for Switched Reluctance Machine and their Validation

  • Jayapragash, R.;Chellamuthu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.990-1001
    • /
    • 2015
  • This paper presents analysis of Switched Reluctance Machine (SRM) using Geometry Based Analytical Model (GBAM), Finite Element Analysis (FEA) and Fourier Series Model (FSM) with curve fitting technique. Further a Transient Analysis (TA) technique is proposed to corroborate the analysis. The main aim of this paper is to give in depth procedure in developing a Geometry Based Analytical Model of Switched Reluctance Machine which is very accurate and simple. The GBAM is developed for the specifications obtained from the manufacturer and magnetizing characteristic of the material used for the construction. Precise values of the parameters like Magneto Motive Force (MMF), flux linkage, inductance and torque are obtained for various rotor positions taking into account the Fringing Effect (FE). The FEA model is developed using MagNet7.1.1 for the same machine geometry used in GBAM and the results are compared with GBAM. Further another analytical model called Fourier Series Model is developed to justify the accuracy of the results obtained by the methods GBAM and FEA model. A prototype of microcontroller based SRM drive system is constructed for validating the analysis and the results are reported.

EFFECTS OF THE VEHICLE MODEL ON SHIFTING TRANSIENTS OF PASSENGER CARS WITH AUTOMATIC TRANSMISSION

  • Kong, J.H.;Park, J.H.;Lim, W.S.;Park, Y.I.;Lee, J.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 2006
  • This paper presents a vehicle model for analyzing the transient shifting characterisitics of a passenger car with automatic transmission. Then the presented vehicle model was linked with the dynamic model of an automatic transmission. In order to identify the parameters of the vehicle model, we installed a test equipment with an accelerometer in a conventional vehicle and performed road tests. With the proposed vehicle model, we simulated the dynamic characteristics during shifting, and benchmarked with experimental results. Moreover, a modal analysis was carried out to investigate the effect of the vehicle model in the frequency domain and to obtain the transfer function of the vehicle model. In addition, we showed the numerical results in the time domain for analyzing the effect of each stiffness element, such as engine mountings and suspensions.

The Effect of Albumin Therapy for Reperfusion Injury Following Transient Focal Cerebral Ischemia in Rats (쥐에서 일과성 국소 뇌허혈 후 생긴 재관류 손상시 알부민치료의 효과)

  • Huh, Pil Woo;Cho, Kyoung Suck;Yoo, Do Sung;Kim, Jae Keon;Kim, Dal Soo;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Objective : Albumin is a very useful drug for the improving of cerebral blood volume and the oncotic effect in cerebral ischemia or cerebral vasospasm. The purpose of this study was to examine the morphological and neurological effect of albumin therapy on reperfusion injury following transient focal cerebral ischemia. Materials and Methods : 18 Male Sprague-Dawley rats weighing 270-320g were used. The ischemia model was produced by 2-hour period of transient middle cerebral artery occlusion with a poly-L-lysin coated intraluminal suture. The agent(20% human serum albumin[HSA]) or control solution(NaCl 0.9%) was administered intravenously at a dosage of 1% of body weight immediate after reperfusion following a 2-hour period occlusion. Neurological function was evaluated by the postural reflex and the forlimb placing test during occlusion(at 60 min) and daily for 3 days thereafter. The brain was perfusion-fixed, and infarct volumes and brain edema were measured. Results : The HSA significantly improved the neurological score in treated group. The rats of albumin treatment group showed significantly reduced total infarct volume(by 34%) and brain edema(by 81%) compared with salinetreated rats. Conclusion : HSA showed a substantial effect on the transient focal cerebral ischemia and reperfusion injury model. These results may indicate its usefulness in treating reperfusion injury patients after thrombolysis treatment for the thrombo-embolic major cerebral artery occlusions.

  • PDF

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

Analysis of Transient Response Behavior and Frequency-Dependent Ground Impedances of the Carbon Ground Electrodes (탄소접지극 접지임피던스의 주파수의존성과 과도응답특성의 해석)

  • Lee, Bok-Hee;Lee, Kang-Soo;Kim, You-Ha;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • This paper presents transient response behavior and frequency-dependent ground impedance of a single carbon ground electrode. The ground impedance of the carbon ground electrode was measured as a function of frequency of injected currents and simulated by using the distributed parameter circuit model with due regard to the frequency-dependent soil parameters, and the transient response behavior of the carbon ground electrode against impulse currents were investigated. As a consequence, the frequency-dependent ground impedance of the carbon ground electrode showed the capacitive behavior, that is, the ground impedance decreases with increasing the frequency of injected currents and lowers at the fast front time of impulse current. It was found that the carbon ground electrode is effective in grounding system for lightning protection. The ground impedance simulated with due regard to the frequency-dependent soil parameters was in good agreement with the measured data. The adequacy of the simulation technique and the distributed parameter circuit model for the carbon ground electrode was verified. It is expected that the simulation methodology, which analyzes the frequency-dependent ground impedance of the carbon ground electrode proposed in this work, can be used in the design of a grounding system for protection against lightning.