• 제목/요약/키워드: Transient jet

검색결과 97건 처리시간 0.024초

Tip-jet gyroplane 개념설계 기법 개발 및 사이징 (Development of Conceptual Design Methodology and Initial Sizing for Tip-Jet Gyroplane)

  • 이동욱;임대진;이관중
    • 한국항공우주학회지
    • /
    • 제46권6호
    • /
    • pp.452-463
    • /
    • 2018
  • Tip-jet gyroplane은 제자리 비행 시 tip-jet의 반발력을 이용하여 로터의 회전력을 얻고, 전진 비행 시 오토자이로 형태로 비행하는 복합형 회전익기의 한 종류이다. Tip-jet gyroplane의 적절한 성능해석과 개념 설계 단계의 사이징을 수행하기 위해서는 tip-jet 모드, gyroplane 모드, transient 모드를 모두 고려할 수 있는 설계 및 해석 기법이 필요하다. 본 연구에서는 이 세 가지 비행 모드 성능해석과 기체 사이징을 수행할 수 있는 코드를 개발하였다. 해석 기법은 tip-jet gyroplane 비행 모드를 이루고 있는 해석 코드 별로 각각 실험값과 비교 검증되었다. 개발된 코드를 이용하여 300km 혹은 400km의 임무 운용반경에서 150knots의 고속 비행을 수행하는 2가지 임무형상에 대해 초기사이징을 수행하였고, 초기 사이징 결과로 설계된 3,000lb 급 tip-jet gyroplane의 형상 및 성능을 분석하였다.

VOF법을 이용한 수중 제트의 수치해석 (Numerical analysis of submerged jet by VOF method)

  • 박근흥;김형준;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.178-182
    • /
    • 2004
  • Numerical analysis of a gaseous jet submerged in a liquid environment was carried out using the volume of fluid(VOF) method to simulate the kinematics of the gas-liquid interface. Two nozzle geometries were tested, one for Fanno tube and the other for converging diverging nozzle. Commercial code was used for the present calculation. Transient behavior of a gaseous jet since its start showed periodic nature of the jet, which was also observed in previous measurements.

  • PDF

표면조도를 가지는 볼록한 면에 충돌하는 제트에 의한 열전달계수 측정 (Heat transfer coefficient measurement by a jet impinging on a rib-roughened convex surface)

  • 정영석;이대희;이준식
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.373-385
    • /
    • 1998
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the convex surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured to within .+-.0.25 deg. C accuracy using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 6 to 10, the dimensionless surface curvature (d/D) 0.056, and the various rib types (height(d$_{1}$) from 1 to 2 mm, pitch (p) from 6 to 32 mm). It was found that the average Nusselt numbers on the convex surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface. In addition, we compared the results by the steady-state method using the gold-film Intrex with those by the transient method.

오목한 표면위에 분사되는 경사충돌제트에 대한 국소열전달계수의 측정 (Local heat transfer measurement from a concave surface to an oblique impinging jet)

  • 임경빈;김학주
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.324-333
    • /
    • 1998
  • Measurements of the local heat transfer coefficients on a hemispherically concave surface with a round oblique impinging jet were made. The liquid crystal transient method was used for these measurements. This method, which is a variation of the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23,000 and the nozzle -to -jet distance was L/d=2, 4, 6, 8 and 10 and the jet angle was $\alpha$=0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$and 40$^{\circ}$. In the experiment, the maximum Nusselt number at all region occurred at L/d(equation omitted)6 and Nusselt number decreases as the inclined jet angle increases. For the normal jet the contours of constant Nusselt number are circular and as the jet is inclined closer and closer to the surface the contours become elliptical shape. The decreasing rate of the Nusselt number at X/d> 0(upstream) on a surface curvature are higher than those on a flate plate and the decreasing rate of the Nusselt number at X/d <0(downstream) on a surface curvature are lower than those on a flate plate. And also, the decreasing rate of local Nusselt number distribution at X/d <0(upstream) exhibit lower than with X/d <0(downstream) as jet angle increases. The second maximum Nusselt number occurred at long distance from stagnation point as jet angle increases.

  • PDF

Hole-Tone의 발생과 원형제트의 불안정 특성 (Instability Characteristics of Circular Jets Producing Hole-Tones)

  • 임정빈;권영필
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1005-1011
    • /
    • 1999
  • Generation of hole-tones and the instability of circular impinging jets are investigated based on the frequency characteristics and the radiated sound field. The experiment is carried out with varying hole sizes, jet speeds and impinging distances. It is found that hole-tones occur by both the low-speed laminar jet and the high-speed turbulent jet, but not by the transient jet, while plate-tones without holes are produced only in the high-speed turbulent impinging jet. When the diameter ratio of the hole to the nozzle is nearly one, hole-tones occur most easily. At low speed, it is found that hole-tones are due to the symmetrical unstable jet and the impinging distance decreases with jet speed. And the Strouhal number and the sound pressure level increase with jet speed. At high speed, hole-tones show the same characteristics as plate-tones. It is found that the ratio of the convection speed varies with the Strouhal number and the jet speed.

  • PDF

물성치 적용 기법에 따른 하이브리드 풍력 블레이드 동적특성 해석에 관한 연구 (A Study on Dynamic Characteristics Analysis of Hybrid Wind Power Blades according to Material Properties Method)

  • 강병윤;한정영;홍철현;문병영
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.5-11
    • /
    • 2012
  • In this paper, the heat transfer coefficient measurement techniques using TSP(temperature sensitive paint) were introduced and the results of a comparative study on the heat transfer coefficient measurement by steady state and transient TSP techniques were discussed. The distributions of heat transfer coefficient by a single $60^{\circ}$ inclined impingement jet on a flat surface were measured by both techniques. Tested Reynolds number based on the jet diameter (d) was 30,000 and the distance between jet exit and target plate (L) was fixed at 10d. Results showed that the measured Nusselt number by both techniques indicated significant difference except near the center of impingement jet. Also, the heat transfer coefficients measured by the transient TSP technique were affected by the reference temperature of the jet. Based on the measured data, characteristics of both TSP techniques were analyzed and suggestions for applying them were also given.

오목표면에 분사되는 난류원형충돌제트에 대한 국소열전달계수 측정에 관한 연구 (Measurement of the Local Heat Transfer Coefficient on a Concave Surface with a Turbulent round Impinging Jet)

  • 임경빈
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.112-119
    • /
    • 1995
  • Measurements of the local heat transfer coeffcients on a spherically concave surface with a round impinging jet are presented. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers used were 1,000, 23,000 and 50,000 and the nozzle-to-jet distance was L/d=2, 4, 6, 8, 10. Presented results are compared to previous measurements for flat plate. In the experiment, the local heat transfer Nusselt numbers on a concave surface are higher than those on a flat plate. Maximum Nusselt number at all region occured at L/d=6 and second maximum in the Nusselt number occured at R/d=2 for both Re=50,000 and Re=23,000 in case of L/d=2 and for only Re=50,000 in case of L/d=4. All other cases exhibit monotonically decreasing value of the Nusselt number along the curved surface.

  • PDF

볼록한 표면위에 분사되는 원형경사충돌제트의 국소열전달계수 측정에 관한 연구 (Measurement of the local heat transfer coefficient on a convex hemispherical surface with round oblique impinging jet)

  • 최형철;이세균;이상훈;임경빈
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.846-854
    • /
    • 1999
  • Measurements of the local heat transfer coefficients were made on a hemispherically convex surface with a round oblique impinging jet. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23000 and the nozzle-to-surface distance was L/d=2, 4, 6, 8, and 10 and the jet angle was $\alpha$=$0^{\circ}\; 15^{\circ}\;30^{\circ}C\; and \;40^{\circ}C$. In the experiment, the Nusselt number at the stagnation point decreases as the jet angle increases and has the maximum value for L/d=6. The X-axis Nusselt number distributions exhibit Secondary maxima at $0^{\circ}C\re $\alpha$\re 15^{\circ}C, L/d\le6$ for X/d<0(upstream) and at $0^{\circ}C\re $\alpha$40^{\circ}C,\;L/d\le4\;and\; at\; 30^{\circ}C\re $\alpha$$\leq$40^{\circ}C,\;L/d\le 6 $for X/d>0(downstream). The secondary maxima occurs at long distance from the stagnation point as the jet angle increases or the nozzle-to-surface distance decreases. The Y-axis Nusselt number distributions exhibit secondary maxima at Y/d=$\pm$2 for $0^{\circ}C\le a\le30^{\circ}C\; and\; L/d\le4, and \;for\;$\alpha$=40^{\circ}C$and L/d=2. The displacement of the maximum Nusselt number from the stagnation point increases as the jet angle increases or the nozzle-to-surface distance decreases and the maximum distance is about 0.67 times of the nozzle diameter. The ratio of the maximum Nusselt number to the stagnation Nusselt number increases as the jet angle increases.

  • PDF

Wind pressure measurements on a cube subjected to pulsed impinging jet flow

  • Mason, M.S.;James, D.L.;Letchford, C.W.
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.77-88
    • /
    • 2009
  • A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.

표면조도를 가진 평판에서 원형충돌제트에 의한 열전달 측정 (Heat Transfer Measurements by a Round Impinging Jet on a Rib-Roughened Flat Plate)

  • 이대희;김윤택;정승훈;정영석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.87-92
    • /
    • 2000
  • This study is to investigate the heat transfer characteristics the for a round turbulent jet impinging on the flat plate with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made fur the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the rib type [height ($d_1$) 2mm, pitch (p) from 12 to 36mm]. It was found that for $L/d{\ge}6$ the average Nusselt numbers on the flat plate with rib type C ($p/d_1=16$) are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface.

  • PDF