• 제목/요약/키워드: Transient Spray Characteristics

검색결과 41건 처리시간 0.023초

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

후처리장치 부착에 따른 대형디젤엔진의 입자 배출특성 (Particle Emission Characteristics of Heavy-duty Diesel Engine using Aftertreatment Systems)

  • 권상일;박용희
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.146-151
    • /
    • 2012
  • This study was primarily focused on the experimental comparison of the particle emission characteristics for heavy duty engine. PM and particle number from various heavy duty engines and DPF type were analyzed with a golden particle measurement system recommended by the Particle Measurement Program. And the repeatability and reproducibility between test mode was analyzed. This study was conducted for the experimental comparison on particulate emission characteristics between the European and World-Harmonized test cycles for a heavy-duty diesel engine. To verify the particulate mass and particle number concentrations from various operating modes, ETC/ESC and WHTC/WHSC, both of which will be enacted in Euro VI emission legislation, were evaluated. Real-time particle formation of the transient cycles ETC and WHTC were strongly correlated with engine operating conditions and after-treatment device temperature. A higher particle number concentration during the ESC mode was ascribed to passive DPF regeneration and the thermal release of low volatile particles at high exhaust temperature conditions.

3차원 LDV를 이용한 실린더내 공기 유동특성에 관한 연구 (A Study on the Characteristics of In-Cylinder Air Flow with 3-D LDV Measurement)

  • 유성출
    • 한국분무공학회지
    • /
    • 제11권1호
    • /
    • pp.39-47
    • /
    • 2006
  • In-cylinder flows in a motored 3.5L four-valve SI engine were investigated quantitatively using three-component LDV system, to determine how engine configuration affects the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, two distinct intake/piston arrangements were used to examine the flow characteristics. Quantification of the flow field was done by calculating two major parameters which are believed to characterize adequately in-cylinder motion. These quantities were turbulent kinetic energy(TKE) and tumble ratio in each plane at each crank angle. The results showed that in-cylinder flow pattern is dominated by the intake effects and two counter rotating vortices, developed during the intake stroke, produced relatively low tumble ratio. Therefore, the applicability of these quantities should be carefully considered when evaluating characteristics resulting from the complex in-cylinder flow motions.

  • PDF

Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구 (A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images)

  • 윤준규;명광재;차경옥
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

초기 직경이 n-heptane 액적 연소 특성에 미치는 영향 (Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Methanol 연료 액적의 연소 특성에 관한 연구 (Study on the Combustion Characteristics of Methanol Fuel Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

TRANSIENT FLAMELET MODELING FOR COMBUSTION PROCESSES OF HSDI DIESEL ENGINES

  • Kim, H.J.;Kang, S.M.;Kim, Y.M.;Lee, J.H.;Lee, J.K.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.129-137
    • /
    • 2006
  • The representative interactive flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the HSDI diesel engine. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the eulerian particle flamelet model using the multiple flamelets has been employed. The vaporization effects on turbulence-chemistry interaction are included in the present RIF procedure. the results of numerical modeling using the rif concept are compared with experimental data and with numerical results of the widely-used ad-hoc combustion model. Numerical results indicate that the rif approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay characteristics as well as the pollutant formation in the HSDI diesel engines.

액체연료 액적군의 집단 점화 (Group Ignition of Liquid Fuel Droplets Cloud)

  • 박용열;김호영
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2376-2384
    • /
    • 1992
  • 본 연구에서는 액적들의 분포상태가 비균일 분포 즉 비균일 액적크기 및 수밀 도 분포를 갖는 액적군에 대하여 집단점화 현상을 이론적인 해석을 통하여 규명한다. 이를 위하여 분사직후부터 점화순간까지의 과정 즉, 액적의 온도상승-증발-혼합기 형 성-반응의 진행-점화의 과정에 초기 액적들의 크기 및 수밀도 분포상태와 기체상의 조 건들이 중요 제변수들, 즉 온도, 속도, 성분질량농도 및 액적의 크기 분포등에 미치는 영향 등은 물론 액적군의 증발특성, 점화특성 등을 이론적 모델을 구성하여 해석한다. 결과들은 현재 사용되고 있는 집단연소 모델의 초기조건으로 사용하며, 액적들의 분포 상태에 따른 점화시의 액적군의 상태 및 점화 특성은 보다 향상된 연소시스템의 운전 및 설계에 분사조건으로서 활용될 것이 기대된다.

FTP-75 냉간 주행 모드로 운전하는 차량의 연료분사 모사시스템에 관한 연구 (A Study on the Fuel Injection System Simulating a Vehicle Driven with FTP-75 Mode for Cold Transition Period)

  • 오대산;이충훈
    • 한국분무공학회지
    • /
    • 제16권2호
    • /
    • pp.76-81
    • /
    • 2011
  • A fuel injection system which is operated with a real vehicle driving simulation was developed as an alternative to a vehicle test for the fuel injectors. The sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in FTP-75 mode in a chassis dynamometer. The imperative sensor signals of the throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and cooling water and intake air temperature were reconstructed using FPGA DAQ boards and a PXI computer. The scanning results showed good agreement with the input signals that were reconstructed. The ECU HILS system operated successfully to drive six fuel injectors, which injected fuel in the same pattern as if they were mounted in the vehicle driven in FTP-75 mode. Also, the fuel injection system developed in this research shows the possibility of application in evaluating the characteristics of fuel injection rate for injectors according to properties of injected fuel with the real driving mode of vehicles.

엔진회전속도의 변화가 HCCI엔진연소에 미치는 영향에 관한 수치해석 연구 (The Research about Engine Speed change Effect on HCCI Engine Combustion by Numerical Analysis)

  • 임옥택
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.126-133
    • /
    • 2011
  • In HCCI Engine, combustion is affected by change of compression speed corresponding to engine speed. The purpose of this study is to investigate the mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the influence of engine speed was shown. And then, in order to clarify the mechanism of influence of engine speed, results of kinetics computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix. In results, as engine speed increased, in-cylinder gas temperature and pressure at ignition start increased. And ignition start timing was retarded and combustion duration was lengthened on crank angle basis. On time basis, ignition start timing was advanced and combustion duration was shortened. High engine speed showed higher robustness to change of initial temperature than low engine speed. Because of its high robustness, selecting high engine speed was efficient for keeping stable operation in real engine which include variation of initial temperature by various factors. The variation of engine speed did not change the reaction path. But, as engine speed increased, the temperature that each elementary reaction would be active became high and reaction speed quicken. Rising the in-cylinder gas temperature of combustion start was caused by these gaps of temperature.