• Title/Summary/Keyword: Transient Liquid Phase bonding

Search Result 59, Processing Time 0.018 seconds

Transient Liquid Phase Bonding with Liquid Phase Sintered Insert Metals (액상소결삽입재를 이용한 천이액상접합에 관한 연구)

  • 권영순;석명진;김지순;김환태;문진수
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.258-267
    • /
    • 2001
  • In this work, the conventional transient liquid phase(TLP) bonding was modified. An attempt was made of using a liquid phase sintered alloy, which will be a liquid phase coexisting with a solid phase at the bonding temperature, as an interlayer for bonding metals. With an aim of revealing the fundamental features of this modified TLP bonding, the kinetics concerned with the growth of solid particles and the isothermal solidification process in Fe-1.16wt%B and Fe-4.5wt%P interlayers for the bonding pure iron, as well as the morphological change of the solid particle, were investigated.

  • PDF

Bonding Phenomena during Transient Liquid Phase Bonding of CMSX-4, High Performance Single Crystal Superalloy (고성능 단결정 초내열합금 CMSX-4의 액상확산접합현상)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2001
  • The bonding phenomena of Ni base single crystal superalloy. CMSX-4 during transient liquid phase(TLP) bonding was investigated using MBF-80 insert metal. Bonding of CMSX-4 was carried out at 1,373∼1,548K for 0∼19.6ks in vacuum. The (001) orientation of each test specimen was aligned perpendicular to the bonding interface. The dissolution width of base metal was increased when the bonding temperature and holding time were increased. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process. Borides were formed in the bonded layer during TLP bonding operation. The solid phase grew epitaxially into the liquid phase from substrates and single crystallization could be readily achieved during the isothermal solidification.

  • PDF

BONDING PHENOMENON IN TRANSIENT LIQUID PHASE BONDING OF NI BASE SUPERALLOY GTD-111

  • Kang, Chung-Yun;Kim, Dae-Up;Woo, In-Soo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.798-802
    • /
    • 2002
  • Metallurgical studies on the bonded interlayer of directionally solidified Ni-base superalloy GTD111 joints were carried out during transient liquid phase bonding. The formation mechanism of solid during solidification process was also investigated. Microstructures at the bonded interlayer of joints were characterized with bonding temperature. In the bonding process held at 1403K, liquid insert metal was eliminated by well known mechanism of isothermal solidification process and formation of the solid from the liquid at the bonded interlayer were achieved by epitaxial growth. In addition, grain boundary formed at bonded interlayer is consistent with those of base metal. However, in the bonding process held at 1453K, extensive formation of the liquid phase was found to have taken place along dendrite boundaries and grain boundaries adjacent to bonded interlayer. Liquid phases were also observed at grain boundaries far from the bonding interface. This phenomenon results in liquation of grain boundaries. With prolonged holding, liquid phases decreased gradually and changed to isolated granules, but did not disappeared after holding for 7.2ks at 1473K. This isothermal solidification occurs by diffusion of Ti to be result in liquation. In addition, grain boundaries formed at bonded interlayer were corresponded with those of base metal. In the GTD-ll1 alloy, bonding mechanism differs with bonding temperature.

  • PDF

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(I) - Bonding Phenomena and Mechanism - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(I))

  • 강정윤;권민석;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2003
  • The bonding phenomenon and mechanism in the transient liquid phase bonding(TLP Bonding) of directionally solidified Ni base superalloy, GTD-111 was investigated. At the bonding temperature of 1403K, liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B and Si into the base metal and solids in the bonded interlayer grew epitaxially from mating base metal inward the insert metal. The number of grain boundaries formed at the bonded interlayer was corresponded with those of base metal. The liquation of grain boundary and dendrite boundary occurred at 1433K. At the bonding temperature of 1453K which is higher than liquation temperature of grain boundary, liquids of the Insert metal were connected with liquated grain boundaries and compositions in each region mixed mutually. In Joints held for various time at 1453t phases formed at liquated grain boundary far from the interface were similar to those of bonded interlayer. With prolonged holding time, liquid phases decreased gradually and liquids of continuous band shape divided many island shape. But liquid phases did not disappeared after holding for 7.2ks at 1453k. Isothermal solidification process at the bonding temperature which is higher than the liquation temperature of the grain boundary was controlled by diffusion of Ti to be result in liquation than B or Si. in insert metal. (Received January 15, 2003)

Liquid Phase Diffusion Bonding Procedure of Rene80/B/Rene80 System -Liquid Phase Diffusion Bonding Using B Powder Coating Method (Rene80/B/Rene80계의 액상확산 접합과정 -B분말 도포법을 이용한 액상확산접합)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.132-138
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using boron(B) as an insert material, where B has high diffusivity and higher melting point as an insert material. Bonding procedure and bonding mechanism of Rene80/B/Rene80 joint were investigated. As results, liquid metal was produced by solid state reaction between base metal and insert material on bonding zone. The liquid metal was produced preferentially at the grain boundary. Except for production of liquid metal, other bonding procedure was nearly same as TLP(Transient Liquid Phase) bonding. Bonding time, however, was reduced compared to prior result of TLP bonding. By bonding S.4ks at l453K, Ren80/B/Rene80 joint was isothermally solidified and homogenized where thickness of insert material was 7.5.mu.m.

  • PDF

Trasient Liquid Phase bonding for Power Semiconductor (전력반도체 패키징을 위한 Transient liquid phase 접합 기술)

  • Roh, Myong-Hoon;Nishikawa, Hiroshi;Jung, Jae Pil;Kim, Wonjoong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, a demand in sustainable green technologies is requiring the lead free bonding for high power module packaging due to the environmental pollution. The Transient-liquid phase (TLP) bonding can be a good alternative to a high Pb-bearing soldering. Basically, TLP bonding is known as the combination of soldering and diffusion bonding. Since the low melting temperature material is fully consumed after TLP bonding, the remelting temperature of joint layer becomes higher than the operating temperature of the power module. Also, TLP bonding is cost-effective process than metal nanopaste bonding such as Ag. In this paper, various TLP bonding techniques for power semiconductor were described.

Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel (Ni-Cr계 내열주강의 천이액상 접합)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.

Dissolution Phenomenon of the Base Metal during TLP Bonding Using the Modified Base Metal Powder and Ni Base Filler Metal Powder (유사 조성의 모재분말과 Ni기 삽입금속 혼합분말을 사용한 천이액상확산 접합 시 모재의 용해현상)

  • Song, Woo-Young;Ye, Chang-Ho;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.64-71
    • /
    • 2007
  • The dissolution phenomenon of the solid phase powder and base metal by liquid phase insert metal during Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111(base metal) powder and the GNi3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder was investigated. In case of the mixed powder contains modified GTD111 powder 50wt%, all of the powder was melted by liquid phase at 1423K. At the temperature between solidus and liquidus of GNi3, liquid phase penetrated into the boundary of the modified GTD111 powder and solid particle separated from powder was melted easily because area of reaction was increased. With increasing mixing ratio of the modified GTD111, it needed the higher temperature to melt all of the modified GTD111 powder. During Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111 50wt% and GNi3 50wt% as insert metal, width of the bonded interlayer was increased with increasing bonding temperature by reaction of the base metal and liquid phase in insert metal. Dissolution of the base metal and modified powder by liquid phase progressed all together and after all of the powder was melted nearly, the dissolution of the base metal occurred quickly.

Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation (고온동작소자의 패키징을 위한 천이액상확산접합 기술)

  • Jung, Do-hyun;Roh, Myung-hwan;Lee, Jun-hyeong;Kim, Kyung-heum;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, research and application for a power module have been actively studied according to the increasing demand for the production of vehicles, smartphones and semiconductor devices. The power modules based on the transient liquid phase (TLP) technology for bonding of power semiconductor devices have been introduced in this paper. The TLP bonding has been widely used in semiconductor packaging industry due to inhibiting conventional Pb-base solder by the regulation of end of life vehicle (ELV) and restriction of hazardous substances (RoHS). In TLP bonding, the melting temperature of a joint layer becomes higher than bonding temperature and it is cost-effective technology than conventional Ag sintering process. In this paper, a variety of TLP bonding technologies and their characteristics for bonding of power module have been described.

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging (전력반도체 접합용 천이액상확산접합 기술)

  • Lee, Jeong-Hyun;Jung, Do-hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.