• 제목/요약/키워드: Transient Electromagnetic Field

검색결과 73건 처리시간 0.027초

3가지 접지방식에 대한 접지특성비교 (The Comparison on Grounding Characteristics for 3 Grounding Systems)

  • 신동호;김용;백수현;이은영;김필수;조대훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권6호
    • /
    • pp.289-297
    • /
    • 2000
  • This paper presents a comparison on the resistance and characteristics of transient response of grounding systems under surge currents using frequency domain electromagnetic field analysis software package and field test. Analysis is done by computer model, based on electromagnetic field theory approach, that accurately takes into account frequency dependent characteristics of the system. The transient performance of three grounding systems is analyzed by comparison of frequency dependent impedance and the maximal transient GPR. A double exponential lighting surge current is injected at one corner of the grounding systems. The transient GPRs a rod grounding systems are higher than mesh or electrolytic grounding systems. Af field test, the results of resistance measurement and time-variant of ground resistance slightly reduce electorlytic grounding systems less than rod and mesh grounding systems.

  • PDF

전자기력을 이용한 박판 성형공정의 해석적 연구 (Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force)

  • 서영호;허성찬;구태완;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

가중 라게르 다항식과 전장적분식을 이용한 도체의 과도 산란 해석 (Analysis of Transient Scattering from Conducting Objects using Weighted Laguerre Polynomials and Electric Field Integral Equation)

  • 정백호;정용식
    • 한국전자파학회논문지
    • /
    • 제13권9호
    • /
    • pp.937-946
    • /
    • 2002
  • 본 논문에서는 도체로부터의 안정된 전자기 산란 응답을 계산하는 새로운 해법을 제안한다. 이 방법은 기존의 MOT (marching-on in time) 기법을 이용하지 않고, 가중 라게르 (Laguerre) 다항식으로 유기전류의 과도 응답을 표현하여 시간 영역의 적분방정식을 푼다. 이 시간 영역의 기저함수를 사용함으로써 적분식의 미분항을 해석적으로 처리하여 과도 응답을 구할 수 있다. 또한 적용되는 이 기저함수는 시간이 진행함에 따라 영으로 수렴하는 특성 때문에, 유기전류의 과도응답도 후기 진동을 가지지 않고 영으로 수렴한다. 제안되는 방법의 타당성을 보이기 위하여 시간 영역 전장 적분방정식의 해를 MOT 및 해석해와 주파수 영역으로부터 구한 해의 이산 푸리에 역변환 (inverse discrete Fourier transform, IDFT)과도 비교한다.

순차적 전자기-구조 연성해석을 통한 전자기성형 공정 해석 (Analysis of Electromagnetic Forming Using Sequential Electromagnetic-Mechanical Coupled Simulations)

  • 김정;노학곤;고세진;김태정
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.441-446
    • /
    • 2012
  • A sequential coupled field analysis of electromagnetic free bulging was performed by using FEM. A 2D axi-symmetric electromagnetic model based on the magnetic vector potential is proposed for the calculation of magnetic field and Lorentz's forces. The Newmark integration method is used to calculate the transient dynamic plastic deformation of sheet during free bulging. In the finite element model, the effect of sheet deformation on the electromagnetic field analysis is taken into consideration. In order to confirm the sequential electromagnetic-mechanical coupling analysis, an experiment with an electromagnetic forming apparatus was conducted. The results showed that the final bulge height of the sheet predicted from the proposed method is in good agreement with experimentally measured height.

라게르 함수를 이용한 유전체의 전자파 과도산란 해석 (Analysis of Transient Electromagnetic Scattering from Dielectric Objects using Laguerre Polynomials)

  • 정백호
    • 한국전자파학회논문지
    • /
    • 제14권5호
    • /
    • pp.458-465
    • /
    • 2003
  • 본 논문에서는 3차원 유전체로부터의 전자기 과도 응답을 해석하기 위하여 시간 영역 전장 적분방정식을 이용한 새로운 해법을 제안한다. 이를 위하여 공간 및 시간 시험 과정으로 분리한 갤러킨 방법을 적용한다. 3차원임의 형태의 유전체 표면을 삼각형으로 분할한 다음, 공간에 대한 등가 전류의 전개 및 시험 함수로서 삼각형 벡터 함수를 사용한다. 시간 영역의 미지 계수를 라게르 함수로부터 유도된 기저함수로 근사하며, 이 함수를 시간 영역의 시험 함수로도 사용한다 제안된 방법에 의하여 계산된 등가 전류 및 원거리장의 수치 결과들을 제시한다.

유전체의 전자기 과도산란 해석을 위한 시간영역 결합 적분방정식 (Time Domain Combined Field Integral Equation for Transient Electromagnetic Scattering from Dielectric Body)

  • 김청수;안현수;박재권;정백호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권12호
    • /
    • pp.626-633
    • /
    • 2004
  • In this paper, we present a time domain combined field integral equation (TD-CFIE) formulation to analyze the transient electromagnetic response from three-dimensional dielectric objects. The solution method in this paper is based on the method of moments (MoM) that involves separate spatial and temporal testing procedures. A set of the RWG (Rao, Wilton, Glisson) functions Is used for spatial expansion of the equivalent electric and magnetic current densities and a combination of RWG and its orthogonal component is used as spatial testing. We also investigate spatial testing procedures for the TD-CFIE to select the proper testing functions that are derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable enables one to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are presented and compared with the solutions of the frequency domain combined field integral equation (FD-CFIE).

전자계 시뮬레이션 도구를 이용한 복합 형상의 접지 시스템 해석 (Analysis of Complex Ground Systems using Electromagnetic Simulation Method)

  • 김영진;김재형;김성주
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.48-53
    • /
    • 2016
  • This paper deals with analysis of complex grounding system using electromagnetic simulation method. Electrical devices could be damaged by transient voltage such as a lightning surge. Therefore the measures to protect the equipments from transient, such as a lightning are required. The ground system is important in this respect. The representative parameter of grounding system performance is earth ground resistance. Precise prediction of earth resistance is required, because it is difficult to modify and change after the completion of the grounding system construction. Numerical modeling is often used in numerical analysis to identify the electrical characteristics of the grounding system. However complex systems are difficult to predict grounding characteristics by numerical analysis. If the total electric field of the earth in general is similar to the antenna model, in that the incident electric field and expressed as a sum of the scattering field. In this study, the electromagnetic field simulation tool "ANSYS HFSS" module containing the antenna model was used to analyze performance of ground system. Both the simple and complex grounding system were analyzed by simulation tool and experimental method. As a result simulation method is effective to predict performance of a complex ground system.

라겐르 함수를 시간영역 전개함수로 이용한 자장 적분방정식의 과도 응답 (Transient Response of Magnetic Field Integral Equation Using Laguerre Polynomials as Temporal Expansion Functions)

  • 정백호;정용식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권4호
    • /
    • pp.185-191
    • /
    • 2003
  • In this Paper, we propose an accurate and stable solution of the transient electromagnetic response from three-dimensional arbitrarily shaped conducting objects by using a time domain magnetic field integral equation. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of temporal expansion functions with decaying exponential functions and Laguerre·polynomials. Since these temporal expansion functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation and converges to zero unconditionally. To show the validity of the proposed method, we solve a time domain magnetic field integral equation for three closed conducting objects and compare the results of Mie solution and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

Measurement of Transient Electric Field Emission from a 245 kV Gas Insulated Substation Model during Switching

  • Rao, M. Mohana;Thomas, M. Joy;Singh, B.P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.306-311
    • /
    • 2007
  • The transient fields generated during switching operations in a Gas Insulated Substation (GIS) are associated with high frequency components in the order of few tens of MHz. These transient fields leak into the external environment of the gas-insulated equipment and can interfere with the nearby electronics. Measurements of the transient fields are thus required to characterise the interference caused by switching phenomena in such substations. In view of the above, E-field emission measurement during a switching operation has been carried out for a 245 kV GIS model, using a resonant dipole antenna and D-dot sensor. The characteristics of the E-fields i.e., frequency spectra and their levels have been analysed and are reported in the paper. Suitability of the measurements has been confirmed by comparing frequency spectra of the measured and computed transient fields.

시간영역 자장 적분방정식을 이용한 유전체의 전자파 산란 과도해석 (Transient Analysis of Electromagnetic Scattering From Dielectric Objects Using Time-Domain Magnetic Field Integral Equation)

  • 서정훈;정백호;한상호;안현수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.412-417
    • /
    • 2003
  • In this Paper, we propose a time-domain magnetic field integral equation (TD-MFIE) formulation for analyzing the transient electromagnetic response from three-dimensional (3-D) dielectric bodies. The solution method in this paper is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent electric and magnetic currents are approximated tv a set of orthonormal basis function that is derived from the Laguerre polynomials. These basis functions are also used for the temporal testing. Numerical results computed by the proposed method are presented and compared.