• Title/Summary/Keyword: Transglycosylation

Search Result 71, Processing Time 0.028 seconds

Functional Characteristics of Cyclodextrin Glucanotransferase from Alkalophilic Bacillus sp. BL-31 Highly Specific for Intermolecular Transglycosylation of Bioflavonoids

  • Go, Young-Hoon;Kim, Tae-Kwon;Lee, Kwang-Woo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1550-1553
    • /
    • 2007
  • The functional characteristics of a ${\beta}$-cyclodextrin glucanotransferase (CGTase) excreted from alkalophilic Bacillus sp. BL-31 that is highly specific for the intermolecular transglycosylation of bioflavonoids were investigated. The new ${\beta}$-CGTase showed high specificities for glycosyl acceptor bioflavonoids, including naringin, rutin, and hesperidin, and especially naringin. The transglycosylation of naringin into glycosyl naringin was then carried out under the conditions of 80 units of CGTase per gram of maltodextrin, 5 g/l of naringin, 25 g/l of maltodextrin, and 1 mM $Mn^{2+}$ ion at $40^{\circ}C$ for 6 h, resulting in a high conversion yield of 92.1%.

Kinetic Analysis of Transglycosylation Reaction of Stevioside Using Raw Starch as a Glycosyl Donor (생전분을 당공여체로 한 Stevioside의 당전이 반응의 동력학적 해석)

  • 박동찬;백승걸이용현
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.108-114
    • /
    • 1994
  • Kinetic equations for transglycosylation of stevioside in the attrition coupled reaction system using raw starch as a glycosyl donor were derived considering that the reaction was carried out through two steps; production of cyclodextrin(CD) from raw starch in the attrition coupled reaction system and then transglycosylation of glycosyl residues to stevioside from produced CD. Kinetic constants of derived equation were evaluated. The simulation result showed that the derived kinetic equations could predict the experimental data reasonably well and that can be utilized for optimization and scale-up of transglycosylation reactor and process developments.

  • PDF

Synthesis of Glucosyl-sugar Alcohols Using Glycosyltransferases and Structural Identification of Glucosyl-maltitol

  • Kim, Tae-Kwon;Park, Dong-Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.310-317
    • /
    • 1997
  • Enzymatic synthesis of glucosyl-sugar alcohols using various transglycosylating enzymes, such as cyclodextrin glucanotransferase (CGTase), ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pullulanase was investigated using various sugar alcohols, such as sorbitol, xylitol, inositol, maltitol, and lactitol as glucosyl acceptors. CGTase showed the highest transglycosylating activity to sugar alcohols compared to other transglycosylating enzymes, and inositol and maltitol were the most suitable glucosyl acceptors. Soluble starch, extruded starch, cyclodextrins, and maltooligosaccharides were also identified to be adequate glucosyl donors for transglycosylation reaction of CGTase to sugar alcohols. The synthesis of glucosyl-maltitol in the reaction system using extruded starch as the glucosyl donor and maltitol as the glucosyl acceptor showed the best results showing the highest transglycosylation yield. The transglycosylation products were purified by activated carbon column chromatography with ethanol gradient elution. Chemical structures of above transglucosylated products were analyzed by nuclear magnetic resonance spectroscopy, and two products were identified to be maltotritol and maltotetraitol, in which one or two glucose molecules attached to the parent maltitol molecule by a ${\alpha}$-l,4-glucosidic bond, respectively.

  • PDF

Acceptor and transglycosylation reaction by mixed dextransucrase prepared from Leuconostoc mesenteroides B-512MCM, 742CB3, 1299C

  • Park, Hyeon-Jeong;Lee, So-Yeong;Ryu, Hwa-Ja;Lee, Jin-Ha;Kim, Do-Man;Kim, Do-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.235-238
    • /
    • 2002
  • Leuconostoc mesenteroides B-512FMCM, 742CB3, 1299C의 dextransucrase들의 glycosyl기 전이 특성을 수용체 반응과 transglycosylation반응을 통해 확인하였다. 수용체 반응의 경우 10% sucrose에 수용체로 4% maltose를 첨가하여 반응시켰고 transglycosylation반응은 다른 크기, 다른 농도 그리고 다른 종류의 가지 결합의 dextran 을 합성하는 효소들을 이용하여 수행하였다. 각각의 효소들은 maltose를 이용한 수용체 반응에서 유사한 종류의 수용체 산물들을 합성한 것에 비해 세 dextransucrase들 (512FMCM, 742CB3, 1299C) 을 일정 비율로 혼합하여 maltose를 이용한 수용체 반응 결과 512FMCM 효소의 활성 비율을 줄이고 742CB3, 1299C 효소의 활성 비율을 증가시켰을 경우에는 ${\alpha}-1{\rightarrow}$3 의 가지결합이 많은 dextran 을 합성하였다. 또한, 세 가지 다른 구조의 dextran(T40, 742CB, B1299)에 100mM maltose을 수용체로 첨가해 각각의 dextransucrase(512FMCM, 742CB3, 1299C)와 transgly cosylation을 수행한 결과 1299C 효소가 세 종류의 dextran(T40, 742CB, B1299) 에 모두 가지 결합이 많은 dextran을 합성함을 확인하였다. 또한 ${\alpha}-1{\rightarrow}$6 결합으로 주로 이루어진 2%, 5% dextran(T10, T40, T7O, T500, T2000)에 dextransucrase(512FMCM, 742CB3, 1299C)를 반응시켜 기존의 dextran 보다 가지 결합이 더 많이 형성된 transglycosylation 산물을 합성하였다. 이때 maltose를 첨가했을 경우 이 수용 체에 의해 많은 ${\alpha}-1{\rightarrow}$6 가지 결합의 dextran 을 합성함을 확인하였다.

  • PDF

Role of Dipeptide at Extra Sugar-Binding Space of Thermus Maltogenic Amylase in Transglycosylation Activity

  • Baek, Jin-Sook;Kim, Tae-Jip;Kim, Young-Wan;Cha, Hyun-Ju;Kim, Jung-Wan;Kim, Yong-Ro;Lee, Sung-Joon;Moon, Tae-Wha;Park, Kwan-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.969-975
    • /
    • 2003
  • Two conserved amino acid residues in the extra sugar-binding space near the catalytic site of Thermus maltogenic amylase (ThMA) were analyzed for their role in the hydrolysis and transglycosylation activity of the enzyme. Site-directed mutagenesis was carried out by replacing N33l with a lysine (N331K), E332 with a histidine (E332H), or by replacing both residues at the same time (N331K/E332H). The measured $K_m$ values indicated that affinities toward all substrates tested, including starch, pullulan, ${\beta}-cyclomaltodextrin$, and acarbose, were lower in all the mutants compared to that of wild-type ThMA, leading to reduced hydrolysis activity. In addition, the lower ratio of transglycosylation to hydrolysis in the mutants compared to that in the wild-type ThMA indicated that these mutants preferred hydrolysis to the transglycosylation reaction. These results demonstrated that the conserved dipeptide at 331 and 332 of ThMA is directly involved in the formation and accumulation of transfer products by accommodating acceptor sugar molecules.

Synthesis of Glycosides by Transglycosylation of $\alpha$-Amylase from Soluble Starch in Water-Organic Two Phase System (전분을 기질로 한 이상계에서 Amylase의 당전이반응에 의한 배당체의 합성)

  • 박종이;이재동;이태호;장경립
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Benzylalcohol-$\alpha$-glucoside (BG) was synthesized from soluble starch by transglycosylation of $\alpha$-amylase. Transglycosylation in water-organic two phase system containing 1% soluble starch as a glycosyl donor, 90% benzylalcohol as a glycosyl acceplor, 10% citrate buffer solulion (0.1 M, pH 5.0), and 10 unit of $\alpha$-amylase (Aspergilllw oryzae) was showed highcst efficiency. About 4 mg BG was obtained from 10 mg starch in reaction for 80 hrs at $40^{\circ}C$. Initially benzylalcohol-$\alpha$-maltoside Q3M) was major product, but as the reaction proceeded, it was hydrolyzed to glucose and BG. Finally the product of transglycosylation by $\alpha$-amylase was only BG. The both products did not show reducing powcr and hydrolyzed by $\alpha$-glucosidase and $\alpha$-amylase, respectively. The molecular wcights of both were estimated to be 270 and 432 by ES1-Mass, respectively.

  • PDF

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

  • Kim, Myo-Deok;Jung, Dong-Hyun;Seo, Dong-Ho;Jung, Jong-Hyun;Seo, Ean-Jeong;Baek, Nam-In;Yoo, Sang-Ho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1845-1854
    • /
    • 2016
  • The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.

Enzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase

  • Jung, Dong-Hyun;Seo, Dong-Ho;Park, Ji-Hae;Kim, Myo-Jung;Baek, Nam-In;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.562-570
    • /
    • 2019
  • ${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.

Novel Suspension-Phase Enzyme Reaction System Using Insoluble Extrusion Starch as Glycosyl Donor for Intermolecular Transglycosylation of L-Ascorbic Acid

  • Kim, Tae-Kwon;Jung, Se-Wook;Go, Young-Hoon;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1678-1683
    • /
    • 2006
  • A novel suspension-phase enzyme reaction system for the intermolecular transglycosylation of L-ascorbic acid into 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid supplementing extrusion starch as the glycosyl donor was developed using cyclodextrin glucanotransferase from Thermoanaerobacter sp. A high conversion yield compared to the conventional soluble-phase enzyme reaction system using cyclodextrins and soluble starch was achieved. The optimal reaction conditions were 2,000 units of cycIodextrin glucanotransferase, 20 g/l of L-ascorbic acid, and 50 g/l of extrusion starch at $50^{\circ}C$ for 24 h. The new suspension-phase enzyme reaction system also exhibited several distinct advantages other than a high conversion yield, including a lower accumulation of oligosaccharides and easily separable residual extrusion starch by centrifugation or filtration in the reaction mixture, which will facilitate the purification of 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid. The new suspension-phase enzyme reaction system seems to be potentially applicable as the industrial process for the production of thermally and oxidatively stable 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid.

Low Cariogenicity of Maltosyl-erythritol, Major Transglycosylation Product of Erythritol, by Bacillus stearothermophilus Maltogenic Amylase

  • Jeon, Eun-Joo;Jung, Il-Hun;Cho, Kil-Soon;Seo, Eun-Sung;Kim, Do-Man;Lee, Sung-Joon;Park, Kwan-Hwa;Moon, Tae-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.815-818
    • /
    • 2003
  • Maltosyl(G2)-erythritol, produced by the transglycosylation reaction of erythritol with maltotriose by Bacillus stearothermophilus maltogenic amylase, was not utilized either as a substrate for lactic acid production or for water-insoluble glucan synthesis. An inhibition assay of dextransucrase and mutansucrase showed that the dental caries suppression effect of G2-erythritol was greater than that of erythritol.