• Title/Summary/Keyword: Transgenic tomato

Search Result 44, Processing Time 0.019 seconds

Plants as platforms for the production of vaccine antigens (항원 생산 기반으로서의 식물 연구)

  • Youm, Jung-Won;Jeon, Jae-Heung;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.250-261
    • /
    • 2010
  • The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, stable, safe approach for oral vaccination alternative to traditional parenteral vaccines. Over the past two decades, many different vaccine antigens expressed via the plant nuclear genome have elicited appropriate immunoglobulin responses and have conferred protection upon oral delivery. Up to date, efforts to produce antigen proteins in plants have focused on potato, tobacco, tomato, banana, and seed (maize, rice, soybean, etc). The choice of promoters affects transgene transcription, resulting in changes not only in concentration, but also in the stage tissue and cell specificity of its expression. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-derived vaccines. In animal and Phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Future areas of research should further characterize the induction of the mucosal immune response and appropriate dosage for delivery system of animal and human vaccines. This article reviews the current status of development in the area of the use of plant for the development of oral vaccines.

Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen

  • Lee, Soo-Yeon;Choi, Yeon-Ju;Ha, Young-Mie;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.130-137
    • /
    • 2007
  • A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.

AtERF11 is a positive regulator for disease resistance against a bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana (애기장대 AtERF11 유전자에 의한 Pseudomonas syringae에 대한 병 저항성 유도)

  • Kwon, Tack-Min;Jung, Yun-Hui;Jeong, Soon-Jae;Yi, Young-Byung;Nam, Jae-Sung
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.235-240
    • /
    • 2007
  • AvrRpt2 protein triggers hypersensitive response (HR) and strong disease resistance when it is translocated from a bacterial pathogen Pseudomonas sp. to host plant cells containing a cognate RPS2 resistance protein through Type III Secretion System (TTSS). However, AvrRpt2 protein can function as the effector that suppresses a basal defense and enhances the disease symptom when functional RPS2 resistance protein is absent in the infected plant cells. Using Affymetrix Arabidopsis DNA chip, we found that many genes were specifically regulated by AvrRpt2 protein in the rps2 Arabidopsis mutant. Here, we showed that expression of AtERF11 that is known as a member of B1a subcluster of AP2/ERF transcription factor family was down regulated specifically by AvrRpt2. To determine its function in plant resistance, we also generated the Arabidopsis thaliana transgenic plants constitutively overexpressing AtERF11 under CaMV 355 promoter, which conferred an enhanced resistance against a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, these results collectively suggest that AtERF11 plays a role as a positive regulator for disease resistance against biotrophic bacterial pathogen in plant.

Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

  • Park, Sangryeol;Gupta, Ravi;Krishna, R.;Kim, Sun Tae;Lee, Dong Yeol;Hwang, Duk-ju;Bae, Shin-Chul;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.