DOI QR코드

DOI QR Code

Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

  • Park, Sangryeol (Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Gupta, Ravi (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Krishna, R. (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Kim, Sun Tae (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Lee, Dong Yeol (Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University) ;
  • Hwang, Duk-ju (Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Bae, Shin-Chul (Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ahn, Il-Pyung (Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2015.05.06
  • Accepted : 2015.10.26
  • Published : 2016.02.01

Abstract

Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.

Keywords

References

  1. Ali, A., Alexandersson, E., Sandin, M., Resjo, S., Lenman, M., Hedley, P. and Andreasson, E. 2014. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics 15:497-514. https://doi.org/10.1186/1471-2164-15-497
  2. Carpenter, C. D., Kreps, J. A. and Simon, A. E. 1994. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNAbinding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104:1015-1025. https://doi.org/10.1104/pp.104.3.1015
  3. Champoiseau, P. G., Jones, J. B. and Allen, C. 2009. Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate anxieties. Plant Health Prog. 10:1-10.
  4. Chiang, C. С. and Hadwiger, L. A. 1990. Cloning and characterization of a disease resistance response gene in pea inducible by Fusarium solani. Mol. Plant-Microbe Interact. 3:78-85. https://doi.org/10.1094/MPMI-3-078
  5. Constabel, C. P. and Brisson, N. 1992. The defense-related STH- 2 gene product of potato shows race-specific accumulation after inoculation with low concentrations of Phytophthora infestans zoospores. Planta 188:289-295.
  6. D'Ippolito, S, Terrile, M. C., Godoy, A. V., Casalongue, C. A. and Fiol, D. F. 2011. Identification and Expression of Stressresponsive Genes to Fusarium solani f. sp. eumartii Infection in Potato Tubers: Old and New Candidates. In: Benkeblia N (Ed) Potato V. Food 5:23-26.
  7. Deslandes, L., Pileur, F., Liaubet, L., Camut, S., Can, C., Williams, K. and Marco, Y. 1998. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Mol. Plant-Microbe Interact. 11:659-667. https://doi.org/10.1094/MPMI.1998.11.7.659
  8. El-Komy, M. H., Abou-Taleb, E. M., Aboshosha, S. M. and El- Sherif, E. M. 2010. Differential expression of potato pathogenesis- related proteins upon infection with late blight pathogen: a case study expression of potato osmotin-like protein. Int. J. Agric. Biol. 12:179-186.
  9. Elphinstone, J. G. 2005. In: The current bacterial wilt situation: a global overview, eds. by Allen, C., Prior, P., Hayward, A.C., Bacterial wilt disease and the Ralstonia solanacearum species complex. Am. Phytopathol. Soc. 9-28.
  10. Elphinstone, J. G., Hennessey, J., Wilson, J. K. and Stead, D. E. 1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bulletin 26:663-678. https://doi.org/10.1111/j.1365-2338.1996.tb01511.x
  11. Fu, Z. Q., Guo, M., Jeong, B. R., Tian, F., Elthon, T. E., Cerny, R. L. and Alfano, J. R. 2007. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284-288. https://doi.org/10.1038/nature05737
  12. Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P. and Pages, M. 1988. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262-264. https://doi.org/10.1038/334262a0
  13. Griffin, T. J., Gygi, S. P., Ideker, T., Rist, B., Eng, J., Hood, L. and Aebersold, R. 2002. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell Proteomics 1:323-333. https://doi.org/10.1074/mcp.M200001-MCP200
  14. Gry, M., Rimini, R., Stromberg, S., Asplund, A., Ponten, F., Uhlen, M. and Nilsson, P. 2009. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10:365-378. https://doi.org/10.1186/1471-2164-10-365
  15. Guevara, M. G., Verissimo, P., Pires, E., Faro, C. and Daleo, G. R. 2004. Potato aspartic proteases: induction, antimicrobial activity and substrate specificity. J. Plant Pathol. 86:233-238.
  16. Hayward, A. C. 1991. Biology and epidemiology of bacterial wil caused by Pseudomonas solanacernum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  17. Iturriaga, E. A., Leech, M. J., Barratt, D. P. and Wang, T. L. 1994. Two ABA-responsive proteins from pea (Pisum sativum L.) are closely related to intracellular pathogenesis-related proteins. Plant Mol. Biol. 24:235-240. https://doi.org/10.1007/BF00040591
  18. Kim, S. G., Wang, Y., Lee, K. H., Park, Z. Y., Park, J., Wu, J. and Kang, K. Y. 2013. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J. Proteomics 78:58-71. https://doi.org/10.1016/j.jprot.2012.10.029
  19. Kim, S. T., Cho, K. S., Jang, Y. S. and Kang, K. Y. 2001. Twodimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22:2103-2109. https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  20. Kim-Lee, H., Moon, J. S., Hong, Y. J., Kim, M. S. and Cho, H. M. 2005. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am. J. Potato Res. 82:129-137. https://doi.org/10.1007/BF02853650
  21. Kolomiets, M. V., Chen, H., Gladon, R. J., Braun, E. J. and Hannapel, D. J. 2000. A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol. 124:1121- 1130. https://doi.org/10.1104/pp.124.3.1121
  22. Laferriere, L. T., Helgeson, J. P. and Allen, C. 1999. Fertile Solanum tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia sotanacearum. Theor. Appl. Genet. 98:1272-1278. https://doi.org/10.1007/s001220051193
  23. Laluk, K., AbuQamar, S. and Mengiste, T. 2011. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol. 156:2053-2068. https://doi.org/10.1104/pp.111.177501
  24. Moiseyev, G. P., Beintema, J. J., Fedoreyeva, L. I. and Yakovlev, G. I. 1994. High sequence similarity between a ribonuclease from ginsgeng calluses and fungus-elicited proteins from parsley indicates that intraeellular pathogenesis-related proteins are ribonucleases. Planta 193:470-472.
  25. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  26. Peterhansel, C., Freialdenhoven, A., Kurth, J., Kolsch, R. and Schulze-Lefert, P. 1997. Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9:1397-1409. https://doi.org/10.1105/tpc.9.8.1397
  27. Schmitz-Linneweber, C. and Small, I. 2008. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci. 13:663-670. https://doi.org/10.1016/j.tplants.2008.10.001
  28. Siddappa, S., Tiwari, J. K., Sindhu, R., Sharma, S., Bhardwaj, V., Chakrabarti, S. K. and Singh, B. P. 2014. Phytophthora infestans associated global gene expression profile in a late blight resistant Indian potato cv. Kufri Girdhari. Aus. J. Crop Sci. 8:215-222.
  29. Somssich, I. E., Schmelzer, E., Kawalleck, P. and Hahlbrock, K. 1988. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol. Gen. Genet. 213:93-98. https://doi.org/10.1007/BF00333403
  30. Sturm, A. 1992. A wound-inducible glycine-rich protein from Daucus carota with homology to single-stranded nucleic acid-binding proteins. Plant Physiol. 99:1689-1692. https://doi.org/10.1104/pp.99.4.1689
  31. Tan, J., Tan, Z., Wu, F., Sheng, P., Heng, Y., Wang, X. and Wan, J. 2014. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol. Plant 7:1329-1349. https://doi.org/10.1093/mp/ssu054
  32. Taoutaou, A., Socaciu, C., Pamfil, D., Balazs, E., Botez, C., Chis, A. and Matei, H. 2011. Protein Expression in Some Susceptible Potato Late Blight Genotypes. Bulletin UASVM Agriculture 68:363-367.
  33. Velez-Bermudez, I. C. and Schmidt, W. 2014. The conundrum of discordant protein and mRNA expression. Are plants special? Front. Plant Sci. 5:619.
  34. Vidya, C. S., Manoharan, M. and Sita, G. L. 1999. Cloning and characterization of salicylic acid-induced intracellular pathogenesis- related gene from tomato (Lycopersicon esculentum) J. Biosci. 24:287-293. https://doi.org/10.1007/BF02941242
  35. Walter, M. H., Liu, J. W., Grand, C., Lamb, C. J. and Hess, D. 1990. Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Mol. Gen. Genet. 222:353-360. https://doi.org/10.1007/BF00633840
  36. Wenneker, M., Verdel, M. S. W., Groeneveld, R. M. W., Kempenaar, C., Van Beuningen, A. R. and Janse, J. D. 1999. Ralstonia (Pseudomonas) solanacearum race 3 (biovar 2) in surface water and natural weed hosts: first report on stinging nettle (Urtica dioica). Eur. J. Plant Pathol. 105:307-315. https://doi.org/10.1023/A:1008795417575

Cited by

  1. Proteomics survey of Solanaceae family: Current status and challenges ahead 2017, https://doi.org/10.1016/j.jprot.2017.05.016
  2. pp.1314-3530, 2018, https://doi.org/10.1080/13102818.2018.1533431