• 제목/요약/키워드: Transgenic research

검색결과 914건 처리시간 0.024초

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제22권4호
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.

Investigation of Possible Horizontal Gene Transfer from the Leaf Tissue of Transgenic Potato to Soil Bacteria

  • KIM YOUNG TAE;KIM SUNG EUN;PARK KI DUK;KANG TAE HOON;LEE YUN MI;LEE SANG HAN;MOON JAE SUN;KIM SUNG UK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1130-1134
    • /
    • 2005
  • To monitor the possibility of horizontal gene transfer between transgenic potato and bacteria in the environment, the gene flow from glufosinate-tolerant potato to bacteria in soils was investigated. The soil samples treated with the leaf tissue of either glufosinate-tolerant or glufosinate-sensitive potato were subjected to PCR and Southern hybridization to determine possible occurrence of glufosinate-resistant soil bacteria and to detect the bar (phosphinothricin acetyltransferase) gene, conferring tolerance to glufosinate. The bar gene was not detected from genomic DNAs extracted at different time intervals from the soil samples, which had been treated with the leaf tissue of either transgenic or non-transgenic potato for 2 to 8 weeks. In addition, the level of glufosinate-resistant bacteria isolated from the soil samples treated with the leaf tissue of transgenic potato was similar to that of the samples treated with non-transgenic potato after 4 months of incubation at $25^{\circ}C$. The bar gene was not detected in the genomic DNAs extracted from colonies growing on the plate containing glufosinate, indicating that the bacteria could acquire the resistant phenotype to glufosinate by another mechanism without the uptake of the bar gene from glufosinate-tolerant potato.

Herbicide-resistant Transgenic Mongolian Bentgrass (Agrostis mongolica Roshev.) obtained by Agrobacterium-mediated Transformation

  • Vanjildorj, Enkhchimeg;Bae, Tae-Woong;Song, In-Ja;Kim, Kyung-Moon;Lim, Yong-Pyo;Lee, Hyo-Yeon
    • 한국육종학회지
    • /
    • 제40권2호
    • /
    • pp.128-135
    • /
    • 2008
  • Herbicide resistance is the most common trait being tested and thus herbicide?resistant genetically modified plants are now the most widely cultivated worldwide. Here we developed herbicide?resistant transgenic Agrostis mongolica Roshev. by employing an efficient Agrobacterium?mediated transformation procedure with 25.2% of transformation efficiency. The identification and employment of regenerable and reproducible type of callus was one of the most critical factors to ensure success in this study. PCR analysis confirmed that the bar transgene was integrated into the genome of transgenic plants. The expression of 35S?bar gene was confirmed by Northern blot analysis. The transgenic plants showed complete resistance to herbicide, indicating that the bar gene is functional in transgenic plants.

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제32권4호
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

Effects of BSA, PVA, Gonadotropins and Follicle Shell on In Vitro Maturation and In Vitro Fertilization of Porcine Oocytes

  • Cong, Pei-Qing;Song, Eun-Sook;Kim, Eui-Sook;Li, Zhao-Hua;Zhang, Yong-Hua;Yi, Young-Joo;Park, Chang-Sik
    • Reproductive and Developmental Biology
    • /
    • 제31권2호
    • /
    • pp.61-69
    • /
    • 2007
  • This study was designed to evaluate effects of BSA, PVA, gonadotropins and follicle shell during IVM of porcine oocytes and subsequent development to the blastocyst stage after IVF. Cumulus oocyte complexes (COCs) were cultured in TCM-199 media containing 4 mg/ml BSA and 1 mg/ml PVA during IVM for 44 hr. To compare the effect of gonadotropins on oocyte maturation, COCs were cultured with FSH+LH, FSH, LH and FSH-LH-free media during IVM. respectively. Also, different number of follicle shells (0, 2, 4 and 6) was used to examine whether the presence of follicle shell in culture medium affects oocyte maturation. The percentages of fertilization and blastocyst formation, respectively, were higher in the medium containing the PVA (49.0 and 17.9%) than those containing the BSA (40.0 and 12.2%). Significantly higher rates of Mil oocytes were in the presence of FSH+LH and FSH (88.6 and 85.1 %) compared to other treatments (64.0 and 53.4% at LH and FSH-LH-free media). Co-culture with inverted follicle shells in 2 ml maturation medium enhanced the developmental competence of porcine oocytes. In conclusion, PVA could be used as a macromolecules instead of BSA, and FSH and follicle shell played important roles in maturation of porcine oocytes.

Comparative Study of Protein Profile during Development of Mouse Placenta

  • Han, Rong-Xun;Kim, Hong-Rye;Naruse, Kenji;Choi, Su-Min;Kim, Baek-Chul;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.253-260
    • /
    • 2007
  • To examine the differential protein expression pattern in the 11.5 day post-coitus (dpc) and 18.5 dpc placenta of mouse, we have used the global proteomics approach by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. The differential protein patterns of 3 placentae at the 11.5 dpc and 18.5 dpc from nature mating mice were analyzed. Proteins within isoelectric point range of $3.0{\sim}10.0$, separately were analyzed in 2DE with 3 replications of each sample. A total of approximately 1,600 spots were detected in placental 2-D gel stained with Coomassie-blue. In the comparison of 11.5 dpc and 18.5 dpc placentae, a total of 108 spots were identified as differentially expressed proteins, of which 51 spots were up-regulated proteins such as alpha-fetoprotein, mKIAA0635 protein and transferrin, annexin A5, while 48 spots were down-regulated proteins such as Pre-B-cell colony-enhancing factor l(PBEF), aldolase 1, A isoform, while 4 spots were 11.5 dpc specific proteins such as chaperonin and Acidic ribosomal phosphoprotein P0, while 3 spots were 18.5 dpc specific proteins such as aldo-keto reductase family 1, member B7 and CAST1/ERC2 splicing variant-1. Most identified proteins in this analysis appeared to be related with catabolism, cell growth, metabolism and regulation. Our results revealed composite profiles of key proteins involved in mouse placenta during pregnancy.

Effects of Oviductal Fluid, Culture Media and Zona Pellucida Removal on the Development of Porcine Embryos by Nuclear Transfer

  • Zhang, Y.H.;Song, E.S.;Kim, E.S.;Cong, P.Q.;Lee, S.H.;Lee, J.W.;Yi, Y.J.;Park, Chang-Sik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.962-968
    • /
    • 2009
  • The aim of this study was to compare the effects of oviductal fluid, porcine zygote medium (PZM)-3, PZM-4 and PZM-5, and modified PZM-5 culture media, and determine the effects of zona pellucida (ZP) removal on the development of nuclear transfer (NT) embryos. There were no significant differences in the rates of fusion and cleavage among the five different oviductal fluid concentrations. However, the rates of blastocyst formation and the cell numbers per blastocyst were high in the embryos at the 14 and 28 $\mu{g}$/ml concentrations of oviductal fluid compared to the 0, 56 and 100 $\mu{g}$/ml concentrations. The rates of cleavage and blastocyst formation, and the cell numbers per blastocyst were higher in the PZM-3, PZM-5 and modified PZM-5 media than in the PZM-4 medium. However, there were no significant differences in the fusion rates of oocytes among the four culture media. The cell numbers per blastocyst in the embryos without ZP were significantly greater than those with ZP. However, there were no significant differences in the rates of fusion, cleavage and blastocyst formation between the embryos with and without ZP. In conclusion, we improved blastocyst development and the quality of NT embryos by replacing PVA with 3 mg/ml of BSA in PZM-5 medium and supplementing the PZM-5 medium with 14 $\mu{g}$/ml oviductal fluid. The NT embryos produced by the zona-free NT method had a high rate of blastocyst formation in the modified PZM-5 medium.

Ultrastructure in Porcine Oocytes following Intracytoplasmic Injection of Murine Spermatozoa

  • Kim, N. H.;Jun, S. H;Park, S. H.;J. Y. Yoon;D. I, Jin;S, H. Lee;Park, C. S.
    • 한국가축번식학회지
    • /
    • 제26권4호
    • /
    • pp.353-360
    • /
    • 2002
  • Although successful pronuclear formation and apposition were seen in porcine oocytes following mouse sperm injection, little is known on the morphology of male and female pronuclei following sperm injection. The objective of this study is to describe the ultrastructure of porcine zygote following murine sperm injection in relation to the chronology of pronuclear S phase. At 40h ~ 44h following in vitro maturation, Cumulus cells were removed in TCM-HEPES with 0.1% hyaluronidase. Then, spermatozoa was injected into the cytoplasm of oocytes. After. injection, all oocytes were transferred to NCSU23 medium and cultured at 39$^{\circ}C$ under 5% $CO_2$ in air. Oocytes were fixed in 2% glutaraldehyde in Dulbeccos phosphate-buffered saline and observed by Transmission Electron Microscopy. Nuclear precursor bodies were observed in each pronucleus. A cluster of large and small granules was attached in the nucleolus precursor body. After the apposition of male and female chromatin, chromatin condensation was observed throughout the nucleoplasm and nucleolus precursor bodies and condensed chromatin in contact with clusters of small and large granules and the nuclear envelope were found in apposed pronuclear regions. These results suggest that non-species specific nuclear cytoplasmic interactions take place during pronuclear formation and apposition following sperm injection.

Onset of Pronuclear Formation and DNA Synthesis in Porcine Oocytes following Intracytoplasmic Injection of Porcine or Murine Spematozoa

  • Kim, N. H.;Cui, X. S;Kim, B. K .;S. H. Jun;D. I. Jin;Lee, S. H.;Park, C. S.
    • 한국가축번식학회지
    • /
    • 제26권4호
    • /
    • pp.361-368
    • /
    • 2002
  • The onset of pronucleus formation and DNA synthesis in porcine oocytes following the injection of porcine or murine sperm was determined in order to obtain insights into species-specific paternal factors that contribute to fertilization. After 44h in vitro maturation, spermatozoa was injected into the cytoplasm of oocytes. After injection, all oocytes were transferred to NCSU23 medium and cultured at 39'E under 5% CO2 in air. Similar frequencies of oocytes with female pronuclei were observed after injection with porcine sperm or with murine sperm. In contrast, male pronuclei formed 8 to 9 h following the injection of porcine sperm, and 6 to 8 h following the injection of murine sperm. After pronucleus formation maternally derived microtubules were assembled and appeared to move both male and female pronuclei to the oocyte center. A few porcine oocytes entered metaphase 22 h after the injection of murine sperm, but normal cell division was not observed. The mean time of onset of S-phase in male pronuclei was 9.7 h following porcine sperm injection and 7.4 h following mouse sperm injection. These results suggested that DNA synthesis was delayed in both pronuclei until the sperm chromatin fully decondensed, and the sperm nuclear decondensing activity and microtubule nucleation abilities of the male centrosome are cell cycle dependent.

Effects of Trichostatin A on In Vitro Development of Porcine Parthenogenetic and Nuclear Transfer Embryos

  • Diao, Yun-Fei;Kenji, Naruse;Han, Rong-Xun;Lin, Tao;Oqani, Reza-K.;Kang, Jung-Won;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제37권2호
    • /
    • pp.57-64
    • /
    • 2013
  • Developmental potential of cloned embryos is related closely to epigenetic modification of somatic cell genome. The present study was to investigate the effects of applying histone deacetylation inhibitor, trichostatin A (TSA) to activated porcine embryos on subsequent development of porcine parthenogenetic and nuclear transfer embryos. Electrically activated oocytes were treated with 5 nM TSA for different exposure times (0, 1, 2 and 4 hr) and then the activated embryos were cultured for 7 days. The reconstructed embryos were treated with different concentrations of 0, 5, 10 and 25 nM TSA for 1 hr. Also 5 nM TSA was tested with different exposure times of 0, 0.5, 1, 2 and 4 hr. And fetal fibroblast cells were treated with 50 nM TSA for 1, 2 or 4 hr and with 5 nM TSA for 1 hr. Cumulus-free oocytes were enucleated and reconstructed by TSA-treated donor cells and electrically fused and cultured for 6 days. In parthenogenetic activation experiments, 5 nM TSA treatment for 1 hr significantly improved the percentage of blastocyst developmental rates than the other groups. Total cell number of blastocysts in 1 hr group was significantly higher than other groups or control. Similarly, blastocyst developmental rates of porcine NT embryos following 5 nM TSA treatment for 1 hr were highest. And the reconstructed embryos from donor cells treated by 50 nM TSA for 1 hr improved the percentage of blastocyst developmental rates than the control group. In conclusion, TSA treatment could improve the subsequent blastocyst development of porcine parthenogenetic and nuclear transfer embryos.