• Title/Summary/Keyword: Transgenic animals

Search Result 147, Processing Time 0.026 seconds

Evaluation of Nutritional Safety for the Herbicide-Resistant Rice in Growing Male Rats (성장기 흰쥐에서 제초제 저항성 쌀의 급여에 대한 영양적 안전성 평가)

  • 이성현;박홍주;조소영;전혜경;박용환;정미혜;박선희
    • Journal of Nutrition and Health
    • /
    • v.36 no.10
    • /
    • pp.1030-1035
    • /
    • 2003
  • This study was conducted to evaluate the safety of herbicide-resistant rice, a genetically modified organism (GMO) developed by the Rural Development Administration, in Sprague-Dawley rats. The nutrient content of herbicide-resistant polished and brown cooked rice was compared with that of conventional Ilpum polished and brown cooked rice to assess composition equivalence. Compositional analysis was performed to measure proximates, fiber, and minerals before animal feeding. Growing male rats were fed one of the following four diets for six weeks: Ilpum polished cooked rice (IP) and Ilpum brown cooked rice (IB) as a non-GMO and herbicide-resistant polished cooked rice (GP) and brown cooked rice (GB) as a GMO. We checked clinical symptoms (anorexia, salivation, diarrhea, polyuria, anuria, fecal change) every day, food intake, change of body weight twice a week, and serum biochemistry and organ weights after 6 weeks of experimental feeding among the four groups. Nutrient content of the herbicide-resistant rice was similar to that of the non-transgenic control and was within the published range observed for non-transgenic rice. We could not find any significant difference in the above-mentioned items as the index to be checked in the animals fed the GMO. These results suggest that the nutrient content of genetically modified herbicide-resistant rice is compositionally equivalent to that of conventional Ilpum rice and that growing male rats fed herbicide-resistant rice are no different from those fed Ilpum rice, non-GMO for 6 weeks.

A Study on Bio Art in Modification and Hybrid of Vegetables (식물의 변형과 혼성을 이용한 바이오아트 연구)

  • Jeon, Hyesook
    • The Journal of Art Theory & Practice
    • /
    • no.15
    • /
    • pp.137-165
    • /
    • 2013
  • The prefix 'bio' with the meaning of 'life,' has been used for biotechnology, biochemistry, bioengineering, biomedicine, bioethics, bio-information as well as 'bio art' since 1990s. Bio art is an art as life itself and a kind of new direction in contemporary art that manipulates the processes of life. Bio artists use the properties of life and materials as scientists in laboratory of biology, and change organisms within their own species, of invents life with new characteristics. Technologically and socio-culturally, bio art has been connected with bioengineering. This essay is on the bio art that use vegetables, and on the specified gaze of so-called 'Sci-Artists.' Not only the genetically modified vegetables like works of George Gessert, Ackroyd & Harvey, and Eduardo Kac, but also the works made from the critical viewpoint like those of Paul Vanouse, Natalie Jeremijenko, and Amy Youngs, have 'the molecular gaze'(Suzanne Anker and Dorothy Nelkin's concept) of the genetic age in their art works. As the art history have showed, artists' gazes have insights about social problems that surround us. Bioartists' gazes reveal their insights about social and ethical problems, possibly concealed by science itself. Those problems are about results from practical discoveries of the sequencing of the genome, genetic engineering, cloning and reproduction of human and animals, body transformation, and the commercialization of cell and genes etc. We can find the significance of bioart in the molecular gaze about those problems, and we can rethink the identity of human, the reception of social influences from bio-technology and medicine.

  • PDF

Industrial Applications of Rumen Microbes - Review -

  • Cheng, K.J.;Lee, S.S.;Bae, H.D.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-92
    • /
    • 1999
  • The rumen microbial ecosystem is coming to be recognized as a rich alternative source of genes for industrially useful enzymes. Recent advances in biotechnology are enabling development of novel strategies for effective delivery and enhancement of these gene products. One particularly promising avenue for industrial application of rumen enzymes is as feed supplements for nonruminant and ruminant animal diets. Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. Cellulases, xylanases, ${\beta}$-glucanases, pectinases, and phytases have been shown to increase the efficiency of feedstuff utilization (e.g., degradation of cellulose, xylan and ${\beta}$-glucan) and to decrease pollutants (e.g., phytic acid). These enzymes enhance the availability of feed components to the animal and eliminate some of their naturally occurring antinutritional effects. In the past, the cost and inconvenience of enzyme production and delivery has hampered widespread application of this promising technology. Over the last decade, however, advances in recombinant DNA technology have significantly improved microbial production systems. Novel strategies for delivery and enhancement of genes and gene products from the rumen include expression of seed proteins, oleosin proteins in canola and transgenic animals secreting digestive enzymes from the pancreas. Thus, the biotechnological framework is in place to achieve substantial improvements in animal production through enzyme supplementation. On the other hand, the rumen ecosystem provides ongoing enrichment and natural selection of microbes adapted to specific conditions, and represents a virtually untapped resource of novel products such as enzymes, detoxificants and antibiotics.

Expression of the Recombinant Porcine GH Gene In Vitro Using Tetracycline Inducible Expression System (In Vitro에서의 Tetracycline Inducible Expression System에 의한 재조합 돼지 성장호르몬 유전자의 발현)

  • Kwon Mo Sun;Koo Bon Chul;Kim Teoan
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 2005
  • We cloned cDNA of the PGH(porcine growth hormone) gene and constructed retrovirus vector designed to express PGH gene under the regulation of CMV (cytomegalovirus) promoter. To maximize the expression, WPRE(woodchuck hepatitis virus posttranscriptional regulatory element) sequence was placed at the downstream of the PGH gene. After infection with recombinant viruses, approximately 1×10/sup 6/ PFF(porcine fetal fibroblast) cells released PGH protein into the media as much as 1,400 ng. In a subsequent experiment, a modifications of the retrovirus vector was made to express the PGH gene in a teracycline-inducible manner. In PFF cells carrying these viral vector sequences, addition of doxycycline to the media resulted in 2∼6 fold increase in PGH synthesis. In the modified retrovirus vectors, the WPRE sequence also played a role in boosting the effect of the tetracycline induction. This result indicates that our tetracycline-inducible expression system might be a promising candidate in alleviating the complicate physiological problems caused by constitutive expression of the exogenous genes in the transgenic animals.

Developmental Characteristics of Cloned Embryos Reconstructed with Induced Pluripotent Stem Cells in Pigs (돼지 유도만능줄기세포 유래 복제란의 특성 분석)

  • Kwon, Dae-Jin;Oh, Jae-Don;Park, Mi-Ryung;Hwang, In-Sul;Park, Eung Woo;Hwang, Seongsoo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.232-239
    • /
    • 2019
  • In general, cloned pigs have been produced using the somatic cell nuclear transfer (SCNT) technique with various types of somatic cells; however, the SCNT technique has disadvantages not only in its low efficiency but also in the development of abnormal clones. This study aimed to compare early embryonic development and quality of SCNT embryos with those of induced pluripotent stem cells (iPSCs) NT embryos (iPSC-NTs). Ear fibroblast cells were used as donor cells and iPSCs were generated from these cells by lentiviral transduction with human six factors (Oct4, Sox2, c-Myc, Nanog, Klf4 and Lin28). Blastocyst formation rate in iPSC-NT (23/258, 8.9%) was significantly lower than that in SCNT (46/175, 26.3%; p < 0.05). Total cell number in blastocysts was similar between two groups, but blastocysts in iPSC-NT had a lower number of apoptotic cells than in SCNT (2.0 ± 0.6 vs. 9.8 ± 2.9, p < 0.05). Quantitative PCR data showed that apoptosis-related genes (bax, caspase-3, and caspase-9) were highly expressed in SCNT than iPSC-NT (p < 0.05). Although an early development rate was low in iPSC-NT, the quality of cloned embryos from porcine iPSC was higher than that of embryos from somatic cells. Therefore, porcine iPSCs could be used as a preferable cell source to create a clone or transgenic animals by using the NT technique.

Characterizations of Cell Lineage Markers in the Bone Marrow Cells of Recloned GFP Pigs for Possible Use of Stem Cell Population

  • Park, Kwang-Wook;Choi, Sung-Sik;Lee, Dong-Ho;Lee, Hwang;Choi, Seung-Kyu;Park, Chang-Sik;Lee, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • Two piglets and one juvenile pig were used to investigate closely what types of cells express green fluorescent protein (GFP) and if any, whether the GFP-tagged cells could be used for stem cell transplantation research as a middle-sized animal model in bone marrow cells of recloned GFP pigs. Bone marrow cells were recovered from the tibia, and further analyzed with various cell lineage markers to determine which cell lineage is concurrently expressing visible GFP in each individual animal. In the three animals, visible GFP were observed only in proportions of the plated cells immediately after collection, showing 41, 2 and 91% of bone marrow cells in clones #1, 2 and 3, respectively. The intensity of the visible GFP expression was variable even in an individual clone depending on cell sizes and types. The overall intensities of GFP expression were also different among the individual clones from very weak, weak to strong. Upon culture for 14 days in vitro (14DIV), some cell types showed intensive GFP expression throughout the cells; in particular, in cytoskeletons and the nucleus, on the other hand. Others are shown to be diffused GFP expression patterns only in the cytoplasm. Finally, characterization of stem cell lineage markers was carried out only in the clone #3 who showed intensive GFP expression. SSEA-1, SSEA-3, CD34, nestin and GFAP were expressed in proportions of the GFP expressing cells, but not all of them, suggesting that GFP expression occur in various cell lineages. These results indicate that targeted insertion of GFP gene should be pursued as in mouse approach to be useful for stem cell research. Furthermore, cell- or tissue-specific promoter should also be used if GFP pig is going to be meaningful for a model for stem cell transplantation.

Plant-based production of therapeutic antibodies (식물기반 치료용 항체생산)

  • Kim, Young-Kwan;So, Yang-Kang;Park, Da-Young;Kim, Hyun-Soon;Jeon, Jae-Heung;Choo, Young-Kug;Ko, Ki-Sung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Antibodies are powerful and versatile tools to play a critical role in the diagnosis and treatment of many diseases. Their application has been enhanced significantly with the advanced recombinant DNA and heterologonous expression technologies, allowing to produce immunotherapeutic proteins with improved biofunctional properties. However, with currently available technologies, mammalian cell-based therapeutic antibody production, as an alternative for production in humans and animals, is often not plentiful for passive immunotherapeutics in treatment of many diseases. Recently, plant expression systems for therapeutic antibodies have become well-established. Thus, plants have been considered to provide an attractive alternative production system for therapeutic antibodies, as plants have several advantages such as the lack of human pathogens, and low cost of upstream production and flexible scale-up of highly valuable recombinant glycoproteins. Recent advances in modification of posttranslational processing for human-like glycosylation in transgenic plants will make it possible that plant can become a suitable protein expression system over the animal cellbased current production system. This review will discuss recent advances in plant expression technology and issues for their application to therapeutic antibody production.

Inhibition of mIGF-1 and mGHR Gene Expression using Tetracycline-Inducible RNAi System in Mouse Liver Cell (Tetracycline 유도적인 RNAi System을 이용한 생쥐 성장 관련 유전자의 발현 억제)

  • Son, Hye Jin;Koo, Bon Chul;Kwon, Mo Sun;Lee, Young Man;Kim, Teoan
    • Reproductive and Developmental Biology
    • /
    • v.38 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • In this study, to further understand the mechanism of animal growth and to develop a miniature transgenic animal model, we constructed and tested tetracycline-inducible RNAi system using shRNA targeting the mRNA of mouse insulin-like growth factor (mIGF-1) or mouse growth hormone receptor (mGHR) gene. Quantitative real-time PCR analysis of mouse liver cell (Hepa1c1c7) cells transfected with these vectors showed 85% or 90% of expression inhibition effect of IGF-1 or GHR, respectively. In ELISA analysis, the protein level of IGF-1 in the cells expressing the shRNA targeting IGF-1 mRNA was reduced to 26% of non-transformed control cells. Unexpectedly, in case of using shRNA targeting GHR, the IGF-1 protein level was decreased to 75% of control cells. Further experiments are needed to explain the lower interference effect of GHR shRNA in IGF-1 protein. Accumulated knowledge of this approach could be applicable to a variety of related biological area including gene function study, gene therapy, development of miniature animals, etc.

Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts

  • Lee, Sang-Goo;Park, Jin-Kyu;Choi, Kwang-Hwan;Son, Hye-Young;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1565-1572
    • /
    • 2015
  • Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.

Glutathione Reductase from Oryza sativa Increases Acquired Tolerance to Abiotic Stresses in a Genetically Modified Saccharomyces cerevisiae Strain

  • Kim, Il-Sup;Kim, Young-Saeng;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1557-1567
    • /
    • 2012
  • Glutathione reductase (GR, E.C. 1.6.4.2) is an important enzyme that reduces glutathione disulfide (GSSG) to a sulfydryl form (GSH) in the presence of an NADPH-dependent system. This is a critical antioxidant mechanism. Owing to the significance of GR, this enzyme has been examined in a number of animals, plants, and microbes. We performed a study to evaluate the molecular properties of GR (OsGR) from rice (Oryza sativa). To determine whether heterologous expression of OsGR can reduce the deleterious effects of unfavorable abiotic conditions, we constructed a transgenic Saccharomyces cerevisiae strain expressing the GR gene cloned into the yeast expression vector p426GPD. OsGR expression was confirmed by a semiquantitative reverse transcriptase polymerase chain reaction (semiquantitative RT-PCR) assay, Western-blotting, and a test for enzyme activity. OsGR expression increased the ability of the yeast cells to adapt and recover from $H_2O_2$-induced oxidative stress and various stimuli including heat shock and exposure to menadione, heavy metals (iron, zinc, copper, and cadmium), sodium dodecyl sulfate (SDS), ethanol, and sulfuric acid. However, augmented OsGR expression did not affect the yeast fermentation capacity owing to reduction of OsGR by multiple factors produced during the fermentation process. These results suggest that ectopic OsGR expression conferred acquired tolerance by improving cellular homeostasis and resistance against different stresses in the genetically modified yeast strain, but did not affect fermentation ability.