• Title/Summary/Keyword: Transgenic Plant

Search Result 969, Processing Time 0.026 seconds

Transgenic Tobacco Plant Expressing Environmental E. coli merA Gene for Enhanced Volatilization of Ionic Mercury

  • Haque, Shafiul;Zeyaullah, Md.;Nabi, Gowher;Srivastava, P.S.;Ali, Arif
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.917-924
    • /
    • 2010
  • The practicability of transgenic tobacco engineered to express bacterial native mercuric reductase (MerA), responsible for the transport of $Hg^{2+}$ ions into the cell and their reduction to elemental mercury ($Hg^0$), without any codon modification, for phytoremediation of mercury pollution was evaluated. Transgenic tobacco plants reduce mercury ions to the metallic form; take up metallic mercury through their roots; and evolve the less toxic elemental mercury. Transformed tobacco produced a large amount of merA protein in leaves and showed a relatively higher resistance phenotype to $HgCl_2$ than wild type. Results suggest that the integrated merA gene, encoding mercuric reductase, a key enzyme of the bacterial mer operon, was stably integrated into the tobacco genome and translated to active MerA, which catalyzes the bioconversion of toxic $Hg^{2+}$ to the least toxic elemental $Hg^0$, and suggest that MerA is capable of reducing the $Hg^{2+}$, probably via NADPH as an electron donor. The transgenic tobacco expressing merA volatilized significantly more mercury than wild-type plants. This is first time we are reporting the expression of a bacterial native merA gene via the nuclear genome of Nicotiana tabacum, and enhanced mercury volatilization from tobacco transgenics. The study clearly indicates that transgenic tobacco plants are reasonable candidates for the remediation of mercurycontaminated areas.

Development of Potato Virus Y-Resistant Transgenic Potato (감자 바이러스 Y 저항성 형질전환 감자 개발)

  • PARK, Young Doo;RONIS D.H.;DUYSEN M.E.;CHENG Z.M.;LORENZEN J.H.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.313-317
    • /
    • 1997
  • Leaf segments of the potato (Solanum tuberosum L.) genotypes, ND860-2, Norchip, Russet Norkotah, Goldrush, and Norqueen Russet were transformed with the coat protein gene of potato virus Y (PVY). The white-skinned genotypes, ND860-2 and Norchip, were easily transformed and regenerated into shoots, whereas the three russet-skinned genotypes had low frequencies of regeneration. Transformed shoots were generally recovered in four to six weeks. Antibody to PVY coat protein detected a single band of 30 kD in western blots of transgenic plants. Transformed plants had a normal phenotype in the greenhouse and many showed a delayed buildup of PVY following inoculation. Several transgenic lines had negative ELISA readings 85 days after inoculation. Transgenic lines which did not show detectable levels of PVY antigen will be further tested for resistance to PVY.

  • PDF

북한산 국립공원의 식생군집형에 대하여

  • 송호경;이근복
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.23-33
    • /
    • 1985
  • Plant cell culture is emerging to express bioactive foreign proteins because it has several advantages in that it is safe, economical, genetically stable and eukaryotic expression system comparing with other expression systems. However several limitations such as slow growth rate, low expression level and lack of well established down stream process need to be answered. As a preliminary approach to produce the immunologically interested molecules through the plant cell culture, we tested if granulocyte-macrophage colony stimulating factors (GM-CSFs) from both murine (mGM-CSF) and human (hGM-CSF) are produced as a biologically active form through plant cell culture. The murine and human GM-CSF genes were cloned into the plant expression vector, pBI121, and Ti-plasmid mediated transformation of tobacco leaves was conducted using Agrobacterium tumefaciens harboring both recombinant GM-CSF (rGM-CSF) genes. Cell suspension culture was established from the leaf-derived calli of transgenic tobacco plant. Northern blot analysis indicated the expression of the introduced mGM-CSF gene in both transgenic plant and cell suspension cultures. In addition, the biological activities of both murine and human GM-CSF from plant cell culture were confirmed by measuring the proliferation of the GM-CSF dependent FDC-PI and TF-1 cells, respectively.

  • PDF

Selection of transgenic sweetpotato plants expressing 2-Cys peroxiredoxin with enhanced tolerance to oxidative stress (Peroxiredoxin 유전자 발현 산화스트레스 내성 형질전환 고구마의 선발)

  • Kim, Myoung-Duck;Yang, Kyoung-Sil;Kwon, Suk-Yoon;Lee, Sang-Yeol;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • In order to develop transgenic sweetpotato plants [Ipomoea batatas (L.) Lam. cv. Yulmi] with enhanced tolerance to oxidative stress, we constructed transformation vectors expressing 2-Cys peroxiredoxin (Prx) gene under the control of the stress-inducible SWPA2 or enhanced 35S promoter (named as SP or EP). Transgenic sweetpotato plants were attempted to generate from embryogenic calli using an Agrobacterium-mediated transformation system. Embryogenic calli gave rise to somatic embryos and then converted into plantlets on MS medium containing 100 mg/L kanamycin. Transgenic plants were regenerated in the same medium. Southern blot analysis confirmed that the Prx gene was inserted into the genome of the plants. To further study we selected the transgenic plant lines with enhanced tolerance against methyl viologen (MV). When sweetpotato leaf discs were subjected to methyl MV at $20{\mu}M$, transgenic plants showed about 40% higher tolerance than non-transgenic or empty vector-transformed plants.

The characterization of transgenic Chrysanthemum under low temperature condition (저온저항성 유전자가 도입된 국화 형질전환체 특성)

  • Choi, In-Young;Han, Soo-Gon;Kang, Chan-Ho;Song, Young-Ju;Lee, Wang-Hyu
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.55-61
    • /
    • 2008
  • Previous studies on genetic transformation of chrysanthemum using cold regulated gene (BN115) have been conducted and the PCR and Real-Time PCR based method to determine the presence of the transferred cold regulated gene in the chrysanthemum was established. To check whether over-expression of BN115 gene in transgenic chrysanthemum will enhance their tolerance to cold stress, the transgenic chrysanthemum were grown under low temperature condition and several cold signalling including growth characteristics, stoma size and shape, SPAD value and ion leakage test were investigated. The transgenic chrysanthemum in the low temperature growth chamber grow much faster in term of the height, number and size of the leaves than those of wild-type plants and damage of transgenic plant caused by the low temperature was much less than that of wild-type plants. The stoma type and size of transgenic plant leaves grown at $5^{\circ}C$ were much similar to of wild-type plant cultured on $25^{\circ}C$ It has been found that SPAD value of transgenic plants was much higher than those of wild-type, but the EC density being lower under low temperature condition.

Single Somatic Embryogenesis from Transformant with Proteinase II Gene in Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Kim, Se-Young;Rho, Yeong-Deok;Kim, Moo-Sung
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.205-210
    • /
    • 2003
  • Ginseng(Panax ginseng C.A. Meyer) is a perennial herbaceous plant which grows very slowly. It takes about 3 to 4 years from seeding to collecting the ripe seeds and the ginseng propagation is very difficult. and so, it is very difficult to breed ginseng plant. Ginseng tissue culture was started from at 1960, and ginseng commercial product by in vitro callus culture was saled, however upto now, regenerants were not planted to soil normally. Recently, plant genetic engineering to produce transgenic plants by introducing useful genes has been advanced greatly. In a present paper, transformation of ginseng plants was achieved by co-cultivation with Agrobacterium harboring the binary vector coding Proteinase-II gene, which confer resistant or tolerant to insect pests, The binary vector for transformation was constructed with disarmed Ti-plasmid and with double 35S promoter. The NPT II gene and introduced genes of the transgenic ginseng plants were successfully identified by the PCR. Especially the transgenic ginseng plants were regenerated using new techniques such as repetitive single somatic embryogenesis.

  • PDF

A comparison of individual and combined $_L$-phenylalanine ammonia lyase and cationic peroxidase transgenes for engineering resistance in tobacco to necrotrophic pathogens

  • Way, Heather M.;Birch, Robert G.;Manners, John M.
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.301-308
    • /
    • 2011
  • This study tested the relative and combined efficacy of ShPx2 and ShPAL transgenes by comparing Nicotiana tabacum hybrids with enhanced levels of $_L$-phenylalanine ammonia lyase (PAL) activity and cationic peroxidase (Prx) activity with transgenic parental lines that overexpress either transgene. The PAL/Prx hybrids expressed both transgenes driven by the 35S CaMV promoter, and leaf PAL and Prx enzyme activities were similar to those of the relevant transgenic parent and seven- to tenfold higher than nontransgenic controls. Lignin levels in the PAL/Prx hybrids were higher than the PAL parent and nontransgenic controls, but not significantly higher than the Prx parent. All transgenic plants showed increased resistance to the necrotrophs Phytophthora parasitica pv. nicotianae and Cercospora nicotianae compared to nontransgenic controls, with a preponderance of smaller lesion categories produced in Prx-expressing lines. However, the PAL/Prx hybrids showed no significant increase in resistance to either pathogen relative to the Prx parental line. These data indicate that, in tobacco, the PAL and Prx transgenes do not act additively in disease resistance. Stacking with Prx did not prevent a visible growth inhibition from PAL overexpression. Practical use of ShPAL will likely require more sophisticated developmental control, and we conclude that ShPx2 is a preferred candidate for development as a resistance transgene.

Improvement of Transformation Efficiencies using Agrobacterium-Mediated Transformation of Korean Rice

  • Cho, Joon-Hyeong;Lee, Jang-Yong;Kim, Yong-Wook;Lee, Myoung-Hoon;Park, Seong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.61-68
    • /
    • 2004
  • A reproducible transformation system via optimized regeneration media for Korean rice cultivars was established using Agrobacterium tumefeciens LBA4404 (pSBM-PPGN; gusA and bar). Although japonica rice genotypes were easier to produce transgenic plants compared to Tongil type cultivars, transformation efficiencies were not always correlated with regeneration efficiencies of non-transgenic callus on the control medium. Regeneration efficiencies of Donganbyeo, Ilmibyeo, and Manchubyeo were over 50% in non-transgenic control, however, transformation efficiencies were significantly low when only sucrose was added to the media as a carbon source. However, the medium, MSRK5SS-Pr (or MSRK5SM-Pr), that contains $5\textrm{mgL}^{-1}$ kinetin, $0.5\textrm{mgL}^{-1}$ NAA, 2 % sucrose (or maltose), 3% sorbitol, and $500\textrm{mgL}^{-1}$ proline, was the most efficient not only for regeneration of non-transgenic callus but also for regeneration of transgenic callus in the presence of L-phosphinotricin (PPT). Average transformation efficiencies of 16 Korean rice cultivars were significantly enhanced by using the optimized medium from 1.5% to 5.8% in independent callus lines and from 2.9% to 19.4% in tromsgenic plants obained. Approximately 98.9% (876 out of 885) transgenic plants obtained on optimized media showed basta resistance. Stable integration, inheritance and expression of gusA and bar genes were continued by GUS assay and PCR and Southern analysis of the bar gene. With Pst1 digestion of genomic DNA of transgenic plants, one to five copies of T-DNA segment were observed; however, 76% (19 out of 25 transgenic plants) has low copy number of T-DNA. The transformants obtained from one callus line showed the same copy numbers with the same fractionized band patterns.

Gene Expression in The Fifth Generation of TMV Resistant Transgenic Tobacco Plane at Elevated Temperature (TMV 저항성 형질전환 연초식물체 제 5 세대에서 유전자 안정성 및 고온조건에서의 유전자 발현)

  • 이기원;박성원;이청호;박은경;김상석;최순용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 1998
  • Tobacco mosaic virus(TMV) coat protein cDNA was transformed to Nicotiana tabacum cv. NC82 and the transgenic tobacco plants resistant to TMV infection were isolated in the next generation. The expression of TMV coat protein cDNA and genetic stability of the fifth generation of TMV resistant transgenic tobacco plants at the higher temperature were investigated. The TMV coat protein cDNA was amplified by genomic PCR in all the TMV resistant transgenic tobacco plants. The TMV coat protein expressed in the transgenic tobacco plants was detected at very low level by immunoblot hybridization. Even in tansgenic plants that showed the viral symptom only on very late sucker growth (delay type plants), the coat protein expression in the suckers was much less than that of susceptible tobacco infected with TMV. The TMV coat protein expressed in the transgenic tobacco plants was below 0.01% of total protein. Transcription and expression of the coat protein cDNA in delay type plants were observbed at high temperature (38$^{\circ}C$), and TMV replication was suppressed at both 28$^{\circ}C$ and 38$^{\circ}C$. This indicates that unlike the resistance conferred by 'N' gene. TMV resistance of transgenic tobacco plant won't break down at high temperature.

  • PDF

Production and Secretion of Human Interleukin-18 in Transgenic Tobacco Cell Suspension Culture

  • Sharma, Niti;Kim, Tae-Geum;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.154-159
    • /
    • 2006
  • Interleukin-18 (IL-18), otherwise known as interferon-gamma-inducing factor (IGIF), is one of several well characterized and important cytokines that contribute to host defenses. The complementary DNA (cDNA) of mature human interleukin-18 gene (hIL-18) was fused with the signal peptide of the rice amylase 1A gene (Ramy1A) and introduced into the plant expression vector under the control of a duplicated CaMV 35S promoter. The recombinant plasmid was transformed into tobacco (Nicotiana tabacum L. cv Havana) using the Agrobacterium-mediated transformation method. The integration of the hlL-18 gene into the genome of transgenic tobacco plants was confirmed by polymerase chain reaction (PCR) amplification and its expression was observed in the suspension cells that were derived from the transgenic plant callus by using Northern blot analysis. The hlL-18 protein was detected in the extracts of the transgenic callus and in the medium of the transgenic tobacco suspension culture by using immunoblot analysis. Based upon enzyme-linked immunosorbant assay (ELISA) results, the expression level of the hlL-18 protein approximated $166{\mu}g/L$ in the suspension culture medium. Bioassay results from the induction of $interferon-{\gamma}$ from a KG-1 cell line indicated that the hlL-18 secreted into the suspension culture medium was bioactive.