DOI QR코드

DOI QR Code

Transgenic Tobacco Plant Expressing Environmental E. coli merA Gene for Enhanced Volatilization of Ionic Mercury

  • Haque, Shafiul (Centre for Drug Research, Faculty of Pharmacy, University of Helsinki) ;
  • Zeyaullah, Md. (Gene Expression Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University)) ;
  • Nabi, Gowher (Plant Biotechnology Laboratory, Department of Biotechnology, Jamia Hamdard (Deemed University)) ;
  • Srivastava, P.S. (Plant Biotechnology Laboratory, Department of Biotechnology, Jamia Hamdard (Deemed University)) ;
  • Ali, Arif (Gene Expression Laboratory, Department of Biotechnology, Jamia Millia Islamia (A Central University))
  • Received : 2010.02.02
  • Accepted : 2010.02.08
  • Published : 2010.05.28

Abstract

The practicability of transgenic tobacco engineered to express bacterial native mercuric reductase (MerA), responsible for the transport of $Hg^{2+}$ ions into the cell and their reduction to elemental mercury ($Hg^0$), without any codon modification, for phytoremediation of mercury pollution was evaluated. Transgenic tobacco plants reduce mercury ions to the metallic form; take up metallic mercury through their roots; and evolve the less toxic elemental mercury. Transformed tobacco produced a large amount of merA protein in leaves and showed a relatively higher resistance phenotype to $HgCl_2$ than wild type. Results suggest that the integrated merA gene, encoding mercuric reductase, a key enzyme of the bacterial mer operon, was stably integrated into the tobacco genome and translated to active MerA, which catalyzes the bioconversion of toxic $Hg^{2+}$ to the least toxic elemental $Hg^0$, and suggest that MerA is capable of reducing the $Hg^{2+}$, probably via NADPH as an electron donor. The transgenic tobacco expressing merA volatilized significantly more mercury than wild-type plants. This is first time we are reporting the expression of a bacterial native merA gene via the nuclear genome of Nicotiana tabacum, and enhanced mercury volatilization from tobacco transgenics. The study clearly indicates that transgenic tobacco plants are reasonable candidates for the remediation of mercurycontaminated areas.

Keywords

References

  1. Baya, A. M., P. R. Brayton, N. L. Brown, D. J. Ganmes, E. Russels, and R. K. Colwell. 1986. Coincident plasmid and antimicrobial resistance in marine bacterial isolates from polluted and unpolluted Atlantic Ocean samples. Appl. Environ. Microbiol. 5: 1285-1292.
  2. Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.
  3. Bizily, S. P., C. L. Rugh, A. O. Summers, and R. B. Meagher. 1999. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana plants confers resistance to organomercurials. Proc. Natl. Acad. Sci. U.S.A. 96: 6808-6813. https://doi.org/10.1073/pnas.96.12.6808
  4. Brown, N. L., T. Misra, J. N. Winnie, A. Schmidt, M. Seiff, and S. Seiff. 1986. The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: Further evidence for mer genes, which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet. 202: 143-151. https://doi.org/10.1007/BF00330531
  5. Carty, A. J. and S. F. Malone. 1979. The chemistry of mercury in biological systems, pp. 433-479. In J. O. Nriagu (ed.). The Bioqeochemistry of Mercury in the Elsevier Biomedical, Amsterdam.
  6. Che, D., R. B. Meagher, A. C. Heaton, A. Lima, C. L. Rugh, and S. A. Merkle. 2003. Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol. J. 1: 311-319. https://doi.org/10.1046/j.1467-7652.2003.00031.x
  7. Edwards, K., C. Johnstone, and C. Thompson. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349. https://doi.org/10.1093/nar/19.6.1349
  8. Griffin, H. G., T. J. Foster, S. Silver, and T. K. Mishra. 1987. Cloning and DNA sequence of mercuric reductase and organomercurial resistance determinants of plasmids pDU1358. Proc. Natl. Acad. Sci. U.S.A. 84: 3112-3116. https://doi.org/10.1073/pnas.84.10.3112
  9. Gupta, N. and A. Ali. 2004. Mercury volatilization by R factors systems in Escherichia coli isolated from aquatic environments of India. Curr. Microbiol. 48: 88-96. https://doi.org/10.1007/s00284-003-4054-0
  10. Hanahan, D. 1983. Studies on transformation of E. coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  11. Heaton, A. C. P., C. L. Rugh, T. Kim, N. J. Wang, and R. B. Meagher. 2003. Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ. Toxicol. Chem. 22: 2940-2947. https://doi.org/10.1897/02-442
  12. He, Y. K., J. G. Sun, Z. X. Feng, M. Czako, and L. Marton. 2001. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res. 11: 231-236. https://doi.org/10.1038/sj.cr.7290091
  13. Holsters, M., D. De-Waele, A. Depicker, E. Messens, M. M. Van, and J. Schell. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181-187. https://doi.org/10.1007/BF00267408
  14. Hussein, S. H., N. R. Oscar, T. Norman, and D. Henry. 2007. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: Enhanced root uptake, translocation to shoots, and volatilization. Environ. Sci. Technol. 41: 8439-8446. https://doi.org/10.1021/es070908q
  15. Kholodii, G. Y., O. V. Yuriera, O. L. Lomovskaya, Z. M. Gorlenko, S. Z. Mindlin, and V. G. Nikiforov. 1993. Tn5053, a mercury resistance transposon with integron's ends. J. Mol. Biol. 230: 1103-1107. https://doi.org/10.1006/jmbi.1993.1228
  16. Komura, I. and K. Izaki. 1971. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistance strains of Escherichia coli. J. Biochem. 70: 885-893. https://doi.org/10.1093/oxfordjournals.jbchem.a129718
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  18. Lyyra, S., R. B. Meagher, T. Kim, A. Heaton, P. Montello, R. S. Balish, and S. A. Merkle. 2007. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol. J. 5: 254-262. https://doi.org/10.1111/j.1467-7652.2006.00236.x
  19. Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162. https://doi.org/10.1016/S1369-5266(99)00054-0
  20. Nagata, T., A. Nakamura, T. Akizawa, and H. Pan-Hou. 2009. Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biol. Pharm. Bull. 32: 1491-1495. https://doi.org/10.1248/bpb.32.1491
  21. Ruiz, O. N., H. S. Hussein, N. Terry, and H. Daniell. 2003. Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132: 1344-1352. https://doi.org/10.1104/pp.103.020958
  22. Ruiz, O. N. and H. Daniell. 2009. Genetic engineering to enhance mercury phytoremediation. Curr. Opin. Biotech. 20: 213-219. https://doi.org/10.1016/j.copbio.2009.02.010
  23. Rugh, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. U.S.A. 93: 3182-3187. https://doi.org/10.1073/pnas.93.8.3182
  24. Rugh, C. L., J. F. Senecoff, R. B. Richard, and S. A. Merkle. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16: 925-928. https://doi.org/10.1038/nbt1098-925
  25. Rugh, C. L. 2001. Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation. In Vitro Cell Dev. Biol. Plant 37: 321-325.
  26. Summers, A. O. and S. Silver. 1972. Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 112: 1228-1236.
  27. Summers, A. O. 1986. Organization, expression and evolution of genes for mercury resistance. Annu. Rev. Microbiol. 40: 607-634. https://doi.org/10.1146/annurev.mi.40.100186.003135

Cited by

  1. Accumulation and translocation of 198Hg in four crop species vol.33, pp.2, 2010, https://doi.org/10.1002/etc.2443
  2. Prospects for Exploiting Bacteria for Bioremediation of Metal Pollution vol.44, pp.5, 2010, https://doi.org/10.1080/10643389.2012.728811
  3. The Inhibition Analysis of Two Heavy Metal ATPase Genes (NtHMA3a and NtHMA3b) inNicotiana tabacum vol.19, pp.2, 2015, https://doi.org/10.1080/10889868.2014.995372
  4. Engineering Tobacco to Remove Mercury from Polluted Soil vol.175, pp.8, 2015, https://doi.org/10.1007/s12010-015-1549-7
  5. Tracing the Uptake, Transport, and Fate of Mercury in Sawgrass (Cladium jamaicense) in the Florida Everglades Using a Multi-isotope Technique vol.52, pp.6, 2010, https://doi.org/10.1021/acs.est.7b04150
  6. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives vol.50, pp.24, 2020, https://doi.org/10.1080/10643389.2019.1705724
  7. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives vol.18, pp.5, 2010, https://doi.org/10.3390/ijerph18052435