• Title/Summary/Keyword: Transgenic Mouse

Search Result 214, Processing Time 0.025 seconds

A Comparative Study of [F-18] Florbetaben (FBB) PET Imaging, Pathology, and Cognition between Normal and Alzheimer Transgenic Mice

  • Thapa, Ngeemasara;Jeong, Young-Jin;Kang, Hyeon;Choi, Go-Eun;Yoon, Hyun-Jin;Kang, Do-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • Alzheimer's disease (AD) is highly prevalent in dementia, with no specifically effective treatment having yet been discovered. Amyloid plaques are one of the key hallmarks of AD. Transgenic mouse models exhibiting Alzheimer's disease-like pathology have been widely used to study the pathophysiology of Alzheimer's disease. In this study, we showed an age-dependent correlation between cognitive function, pathological findings, and [F-18] Florbetaben (FBB) PET images. Nineteen transgenic mice (12 with AD, 7 with controls) were used for this study. We observed an increase in ${\beta}$-Amyloid deposition ($A{\beta}$) in brain tissue and [F-18] FBB amyloid PET imaging in the AD group. The [F-18] FBB data showed a mildly negative trend with cognitive function. Pathological findings were negatively correlated with cognitive functions. These finding suggests that amyloid beta deposition can be well-monitored with [F-18] FBB PET and a decline in cognitive function is related to the increase in amyloid plaque burden.

Current Strategies of Genomic Modification in Livestock and Applications in Poultry

  • Park, Tae Sub
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.65-69
    • /
    • 2019
  • Since the development of the first genetically-modified mouse, transgenic animals have been utilized for a wide range of industrial applications as well as basic research. To date, these transgenic animals have been used in functional genomics studies, disease models, and therapeutic protein production. Recent advances in genome modification techniques such zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRIPSR)-Cas9, have led to rapid advancement in the generation of genome-tailored livestock, as well as experimental animals; however, the development of genome-edited poultry has shown considerably slower progress compared to that seen in mammals. Here, we will focus primarily on the technical strategies for production of transgenic and gene-edited chickens, and their potential for future applications.

Transfer and Expression of SEAP (secreted alkaline phosphatase) or GFP (green fluorescence protein) Gene in Mammalian Cells and Mouse Embryos by Using Retrovirus Vector System (포유동물 세포와 생쥐 배에서 Retrovirus Vector를 이용한 SEAP와 GEP 유전자의 전이 및 발현)

  • 김태완;이규승;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 1996
  • One of the biggest problems involved in transgenic animal production is lack of appropriate market genes. To overcome this problem, we tested whether the genes of SEAP (secreted alkaline phosphatase) and GFP (green fluorescence protein) on our retrovirus vectors can be applicable to the transgenic animal production. The main advantage of these marker genes over other generally mainpulation can be selected without sacrificing viability. The results obtained in this study are summarized as follows: 1. Removal of zona pellucida from the mouse zygotes did not affect embryo developments to blastocysts. 2. Co-culture of zona-free embryos with virus-producing cells for 6 hours also did not affect embryo developments to blastocysts. 3. Among 58 blastocysts developed from the zona-free zygotes co-cultured with the virus-producing cells, SEAP expression was observed from the 6 blastocysts. 4. Expression of the GFP gene was detected from the virus- producing cells but no embryo expressing the gene was counted among 50 blastocysts developed from the zona-free zygotes co-cultured with the virus-producing cells.

  • PDF

Production of Transgenic Animals by the Testis-Mediated Gene Transfer I. Production of Transgenic Rats and Mice (정소실질내 유전자 도입에 의한 형질저환동물의 생산 I. 형질전환 흰쥐와 생쥐의 생산)

  • 윤창현;장규태;오석두;주학진;박미령;이병오
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 1998
  • Many trials have been made to produce transgenic animals using sperm cells as a vector transferring foreign DNA into eggs, but reliable results are yet to be obtained (Brinster et al., 1989; Lavitrano et al., 1989; Bachiller et al., 1991; Sato et al., 1994). Recently, one of author(SO) demonstrated that mouse blastocysts derived from eggs fertilized by spermatozoa of male mice single injected with liposome-DNA complexes within the testis expressed thegene (Ogawa et al., 1995.) Here we report that a single injection of liposome-encapsulated DNAs into the testis of either male rats or mice resulted in successfully gene transfer to the postpartum progeny. The expression of mRNA derived from transgenes was also demonstrated in transgenic animals thus obtained. Further, the transmission of the exogenous gene to the descedants was confirmed in one line of transgenic rat up to F4 generation, indicating that the gene was stably incorporated into the germ line. Thus, direct single injection of foreign DNA into the testis provides a novel and convenient means to generate transgenic animals.

  • PDF

Cardiac hypertrophy and abnormal $Ca^{2+}$ handling in transgenic mice overexpressing jnnctate

  • Hong, Chang-Soo;Cho, Myeong-Chan;Kwak, Yong-Geun;Chane, Soo-Wan;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.52-52
    • /
    • 2003
  • Junctate is a newly identified integral ER/SR membrane $Ca^{2+}$ binding protein, which is an alternative splicing form of the same gene generating aspartyl $\square$-hydroxylase and junctin. To elucidate the functional role of junctate in heart, transgenic (TG) mice overexpressing mouse cardiac junctate-1 under the control of mouse $\square$$^{~}$ myosin heavy chain promoter were generated. Overexpression of junctate in mouse heart resulted in cardiac hypertrophy, increased fibrosis, bradycardia, arrhythmias and impaired contractility. Overexpression of junctate also led to down-regulation of SERCA2, calsequestrin, calreticulin and RyR, but to up-regulation of NCX and PMCA. The SR $Ca^{2+}$ content decreased and the L-type $Ca^{2+}$ current density and the action potential durations increased in TG cardiomyocytes, which could be the cause for the bradycardia in TG heart. The present work has provided an important example of pathogenesis leading to cardiac hypertrophy and arrhythmia, which was caused by impaired $Ca^{2+}$ handling by overexpression of junctate in heart.n heart.

  • PDF

Mouse Models of Gastric Carcinogenesis

  • Yu, Sungsook;Yang, Mijeong;Nam, Ki Taek
    • Journal of Gastric Cancer
    • /
    • v.14 no.2
    • /
    • pp.67-86
    • /
    • 2014
  • Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field.

Real-time Imaging of Inositol 1,4,5-trisphosphate Movement in Mouse Salivary Gland Cells

  • Hong, Jeong-Hee;Lee, Syng-Ill;Shin, Dong-Min
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.125-129
    • /
    • 2008
  • Inositol 1,4,5-trisphosphate ($IP_3$) plays an important role in the release of $Ca^{2+}$ from intracellular stores into the cytoplasm in a variety of cell types. $IP_3$ translocation dynamics have been studied in response to many types of cell signals. However, the dynamics of cytosolic $IP_3$ in salivary acinar cells are unclear. A green fluorescent protein (GFP)-tagged pleckstrin homology domain (PHD) was constructed and introduced into a phospholipase C ${\delta}1$ (PLC ${\delta}1$) transgenic mouse, and then the salivary acinar cells were isolated. GFP-PHD was heterogeneously localized at the plasma membrane and intracellular organelles in submandibular gland and parotid gland cells. Application of trypsin, a G protein-coupled receptor activator, to the two types of cells caused an increase in GFP fluorescence in the cell cytoplasm. The observed time course of trypsin-evoked $IP_3$ movement in acinar cells was independent of cell polarity, and the fluorescent label showed an immediate increase throughout the cells. These results suggest that GFP-PHD in many tissues of transgenic mice, including non-cultured primary cells, can be used as a model for examination of $IP_3$ intracellular dynamics.

Increased of the Red Blood Cell in Peripheral Plasma of Transgenic Pigs Harboring hEPO Gene

  • Park, J.K.;Jeon, I.S.;Lee, Y.K.;Lee, P.Y.;Kim, S.W.;Kim, S.J.;Lee, H.G.;Han, J.H.;Park, C.G.;Min, K.S.;Lee, C.H.;Lee, H.T.;Chang, W.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.317-324
    • /
    • 2003
  • The present study were performed to analysis the hematocrit and the red blood cells content into the blood plasma of the transgenic pigs harboring recombinent human erythropoietin gene (rhEPO). Mouse whey acidic protein (mWAP) linked to rhEPO gene was microinjected into pronuclei of porcine one-cell zygotes. After delivered of offspring, PCR analyses identified one mWAP-rhEPO transgenic founder offspring(F$_{0}$). The first generation of transgenic pig (F$_{0}$) harboring mWAP-hEPO appeared to be a male, and the second generation (F$_1$) pigs were made by natural mating of F$_{0}$ with domestic swine, and male and female transgenic pigs (F$_1$) were identified by PCR. The blood samples from transgenic and normal pigs were collected for 50 days during lactation and were counted the red blood cell (RBC) numbers and Hematocrit (HCT) content into the blood. The transgenic pigs expressing rhEPO in their blood gave rise to higher RBC numbers and HCT contents than control animals. rhEPO was secreted both in the blood and milk of genetically engineered pigs harboring rhEPO gene. Therefore, this study provides a model regarding the production of transgenic pig carrying hEPO transgene for biomedical research.earch.

The influence and role of melatonin on in vitro oocyte maturation and embryonic development in pig and cattle

  • Lin, Tao;Lee, Jae Eun;Kang, Jeong Won;Kim, So Yeon;Jin, Dong Il
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.309-317
    • /
    • 2017
  • Melatonin (N-acetyl-5-methoxytryptamine) is an indole synthesized from tryptophan by the pineal gland in animal. The major function of melatonin is to modulate circadian and circannual rhythms in photoperiodic mammals. Importantly, however, melatonin is also a free radical scavenger, anti-oxidant, and anti-apoptotic agent. Recently, the beneficial effects of melatonin on oocyte maturation and embryonic development in vitro have been reported in many species such as pig, cattle, sheep, mouse, and human. In this review, we will discuss recent studies about the role of melatonin in the production of porcine and bovine oocytes and embryos in vitro in order to provide useful information of melatonin in oocyte maturation and embryo culture in vitro.