• Title/Summary/Keyword: Transformer-less

Search Result 187, Processing Time 0.032 seconds

Investigation and Estimation of Transformer Load Factor for Rationalization of Transformer's Efficiency (변압기 효율 적정화를 위한 변압기 부하율 조사 및 추정)

  • Kim, Chong-Min;Kim, Young-Seog;Gil, Hyoung-Jun;Shong, Kil-Mok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.96-101
    • /
    • 2016
  • In this paper, We investigate the number of 795 transformer in the private electrical facilities and analyze the annual load factor. The results show that the annual load factor of transformer is 20.16% in manufacturing industry, education services(school) is 9.59%, retail and wholesale services is 19.68%, resort and leisure industry is 10.93%, office building is 13.10%, and apartment houses is 14.69%. Education services, resort and leisure industry are being operated with a very low annual load factor. The relatively small capacity of less than 500kVA transformer also been analyzed that is being operated with a low load factor. Therefore, In order to minimize the power loss of the transformer, it is advisable to complement the Transformer Efficiency Management system to be designed the efficiency is good transformer when the load is low. Analysis results will be used as the basis for the provision of transformer efficiency management system and be used High-efficiency transformers promotion system.

V/UHF-Band Broadband 2-Way Power Divider (V/UHF-대역 광대역 2분기 전력 분배기)

  • Park, Yeo-Il;Ko, Jin-Hyun;Park, Young-Joo;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.416-422
    • /
    • 2007
  • In this paper, a broadband 2-way power divider which can be used from 20 MHz to 500 MHz in the V/UHF band is designed using transmission-line transformer and ferrite toroid. A 2:1 impedance transformer instead of the conventional 4:1 impedance transformer is realized and this 2:1 transformer is connected with the conventional bridge-type 2-way divider to form a 2-way power divider. Insertion loss of about 3.5 dB, isolation of less than -10 dB, and return loss of less than -10 dB in most band of interest are measured.

Analysis of Characteristics in Transformer by using Coupling Coefficient Type Equivalent Circuit (결합계수형 등가회로에 의한 변압기의 특성해석)

  • 이광직;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.86-92
    • /
    • 1995
  • In the analysis of characteristic behaviors of a real transformer with coupling coefficient K is less than 1, this paper presents the more accurate and practical profits than the traditional analysis of the transformer treated as K∼1. This results from the use of the coupling coefficient type equivalent circuit of the transformer which includes K as positive parameter. Furthermore, a leakage transformer is analyzed in a unified method and the results of analysis are consistent with the practical measurements of the transformer. By using the above equivalent circuit, the characteristics referred to the load side are expressed as Thevenin voltage source and the leakage inductor (1-K2)L2. Therefore, these analysis about the output voltage and the damping factor in the transient state which are affected by the leakage inductor are confirmed to be an effective method.

  • PDF

Case Studies on the Electric Power Loss Reducing Methodology for Transformer Installation in Sewage Treatment Plant (하수처리장 변압기 설치사례 연구를 통한 전력손실 저감방안)

  • Kim, Chu-Young;Choi, Chang-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.70-77
    • /
    • 2011
  • Sewage treatment plants, consuming 1,756[GWh] which is 0.53[%] of national wide electricity consumption, is one of the electricity consuming facilites. At the research of electricity consumption and power quality analysis on sewage treatment plants, average utilization of transformer was less than 40[%] because peak load was very lower than its capacity due to excess capacity. So reduction of power loss can be achieved by transformer design optimization. The achievement in this research, is to meet reduction of power loss through optimizing the capacity and to improve as high efficiency-low loss transformer while the transformer is operating.

Electrical Characteristics of Piezoelectric Transformer using Low Temperature Sintering PCW-PMN-PZT Ceramics (저온소결 PCW-PMN-PZT 세라믹스를 적용한 압전변압기의 전기적 특성)

  • Chung, Kwang-Hyun;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.350-356
    • /
    • 2006
  • In this study, piezoelectric transformer was manufactured at the sintering temperature of $950^{\circ}C$, and then the feasibility of application to low temperature sintering piezoelectric transformers was investigated by evaluating the electrical characteristics of it. The voltage ratio of piezoelectric transformer showed the maximum value at the resonant frequency of input part, and increased according to the increase of load resistance. The output power and efficiency of piezoelectric transformer showed the superior properties when the output impedance of it coincides with the load resistance. Piezoelectric transformer manufactured at the low temperature of $950^{\circ}C$ showed the heat generation less than $20^{\circ}C$ at the output power of 30 W, and stable driving characteristics.

Electrical Properties of High Power Step Down Multilayer Piezoelectric Transformer using Low Temperature Sintering PMN-PNN-PZT Ceramics (저온소결 PMN-PNN-PZT 세라믹스를 이용한 고출력 강압용 적층 압전변압기의 전기적 특성)

  • Yoo, Ju-Hyun;Kim, Kook-Jin;Paik, Dong-Soo;Yoon, Hyun-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.332-336
    • /
    • 2007
  • In this study, multilayer piezoelectric transformer was manufactured using the PMN-PNN-PZT ceramic and then the electrical characteristics were investigated according to the variations of frequency and load resistance. The voltage step-up ratio of multilayer piezoelectric transformer showed the maximum value at the vicinity of 75 kHz and increased according to the increase of load resistance. When the output impedance coincided with the load resistance, the multilayer piezoelectric transformer showed the temperature rise of less than $20^{\circ}C$ at the output power of 20 W. As the results, the multilayer piezoelectric transformer manufactured at low co-firing temperature of $940^{\circ}C$ using PMN-PNN-PZT ceramics could be stably driven as the step-down transformers.

Transformer Vibration Analysis for a variation of Load (부하변화에 대한 변압기 진동 분석)

  • 강창구;곽희로;정찬수;조국희;권혁승
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.103-106
    • /
    • 1993
  • This paper describes the modeling of winding vibration for a variation of load and temperature. The structural changes in transformer windings due to heat cause the change of vibration patterns. The vibration signals were detected by the accelerometer on the transformer windings. The real values were compared with estimated value using least-squares method, vibration model was cstablished and with this model, error compared with original signal was less than -50[db]. These results could be applied to diagnosis of incipient failures of the power transformers.

  • PDF

Comparison of Higher-Order Resonant Topologies for Contact-less Power Converter Systems (무접점 전력용 변환기의 다중공진형 토폴로지 비교)

  • Thenathayalan, Daniel;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.323-324
    • /
    • 2014
  • A higher-order power converter topology for an extremely low coupling (less than 0.15) transformer with high efficiency and wide air-gap (23 mm) is presented in this paper. Among the typical resonant converter topologies for contact-less power transferring systems, Series-Series Resonant Converter (SSRC) and Series-Parallel Resonant Converter (SPRC) are widely used in number of power electronic applications. However, when coupling coefficient of a transformer is seriously low (k<0.5), the series-series resonant converter will possibly operate at short circuited condition because of the small magnetizing impedance. To solve this problem, a modified and improved topology of seventh-order resonant converter for contact-less power converter system is proposed and the results are presented.

  • PDF

A Study on the Safety Evaluation of the Transformer for the Public Rental Apartments Considering the Increase of EVs (전기자동차 보급에 따른 공공임대아파트의 변압기 안정성 평가에 관한 연구)

  • Choi, Jihun;Kim, Sung-Yul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1007-1016
    • /
    • 2017
  • This paper aims to analyze the safety evaluation of the existing transformer for the 0.85 millions of public rental apartments as EVs(Electric Vehicles) increase in order to overcome the environment pollution issue and maintain sustainable development. It is analyzed that the 56.4% capacity of power transformer could secure as EV charging infrastructure, based on the analysis of respective utilization patterns of the housing and power transformer. The acceptable number of EVs is 0.04~0.06 per household from the spare capacity of the power transformer. It is analyzed that EV stock is prospected less than 0.03 per household in 2030, considering the condition of the public rental apartments residents and the growth rate of EVs according to practical scenario. The power demand for EVs is within the allowable capacity range of the power transformer, so the research shows that there is no problem in the stability of the existing transformer until 2030.

Design of a V/UHF-Band Broadband 4-Way Power Divider (V/UHF-대역 광대역 4분기 전력 분배기 설계)

  • Park, Yeo-Il;Ko, Jin-Hyun;Ha, Jae-Kwon;Park, Young-Joo;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.904-912
    • /
    • 2007
  • In this paper, a broadband 4-way power divider which can be used from 20 MHz to 500 MHz in the V/UHF band is designed using transmission-line transformer and ferrite toroid. A 4:1 impedance transformer is realized and this 4:1 transformer is connected with bridge-type 2-way dividers to form a 4-way rower divider, Insertion loss of about 6.8dB, isolation of less than -20dB, and return loss of less than -15dB in most band of interest are measured.