• Title/Summary/Keyword: Transformer vibration

Search Result 168, Processing Time 0.022 seconds

발전소 주변압기 운전중 진동 기준치 설정에 관한 연구

  • Lee, W.R.;Lee, J.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.587-592
    • /
    • 2005
  • Main transformer's integrity assessment in nuclear power plant is estimated by the electrical test of electrical core and wire and the chemical analysis of insulating oil. Mechanical test or analysis has not been so far. So this study makes it with the vibration velocity rating. The vibration velocity rating in main transformer which is based on the real data of vibration velocity measurement under operating and other machinery vibration code such as ISO code is renewed.

  • PDF

Comparison of vibration and noise of higher utility factor Insulation Panel for Transformer (변압기용 고효율 차음판의 진동 및 소음 비교)

  • Jeong, J.H.;Lee, J.H.;Jeong, H.E.;Lim, D.S.;Kim, J.;Choi, B.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.112-116
    • /
    • 2007
  • Highly damped insulation panel for transformer construction is needed in residential area because the making noise from transformer substation in inner city is appeared a lost of problem by increasing to conserve living environment. Therefor in this paper, the vibration and noise characteristic effect of cork-type and sponge-type that is attached between insulation panel and enforce beam in transformer is analized using real size transformer experimentally.

  • PDF

Voltage Gain Characteristics of Piezoelectric Transformer Operation in Second Thickness Extensional Vibration Mode (2차 두께방향 지동모드로 동작되는 압전트랜스포머의 Voltage Gain 특성)

  • 김성진;이수호;류주현;임인호;홍재일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.855-860
    • /
    • 1998
  • This paper presents a new structure for a piezoelectric transformer, operating in thickness extensional vibration mode. Modified $PbTiO_3$ family ceramics were used for the piezoelectric transformer, because it was a material with large anisotropy between elecromechanical coupling factors $K_t$ and $K_p$ . The size of piezoelectric transformer was 20mn long, 20mm wide and 3.1mm thick. The second harmonic resonant frequency of thickness extensional vibration mode was 0.72MHz at loading resistance 100[$\omega$], And Voltage gin of piezoelectric ceramics showed 0.53 at resonant frequency of sencond thickness extensional vibration mode.

  • PDF

Characteristic of Vibration and Sound of Sound Insulation Panel for Transformer (변압기용 차음판의 진동 및 소음 특성)

  • Choe, C.R.;Choi, B.K.;Yang, B.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • Recently, demands for the reduction of noise generated by transformers have been increasing. Almost all the noise generated by a transformer is a result of magnetostrictive vibration in the core. The noise radiates into the atmosphere from the tank through the insulation oil. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer. However, this method has some disadvantages, for example, a large area is needed for equipment installation. In this paper, the vibration and noise effects which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel shape and damping sheet experimentally.

  • PDF

A Study on Characteristics of Step-down Piezoelectric Transformer Using Contour Extended Vibration Mode (경방향 확장 진동모드를 이용한 강압용 압전변압기의 특성에 관한 연구)

  • Lee, Won-Jae;Min, Bok-Ki;Song, Jae-Sung;Chong, Hyon-Ho;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.638-641
    • /
    • 2002
  • This paper presents design and construct of flat type step-down piezoelectric transformer for the application to AC-adapters. This piezoelectric transformer operated in resonance vibration mode. In this paper, Finite element method(FEM) was used for analysis piezoelectric transformers. Vibration mode and electric field of piezoelectric transformer at resonance frequency were simulated. Using this simulation, we manufactured flat type piezoelecric transformer and measured its output characteristics. As results, output power was linearly increased by increasing input power at resonance frequency. And it was found that the transformer exhibited an output power of 11.4[W] at 60[V] input voltage. From these results, we expect that this piezoelecric transformer can be applied to AC adapters.

  • PDF

Thickness-Vibration-Mode Piezoelectric Transformer for Power Converter

  • Su-Ho lee;Yoo, Ju-Hyun;Yoon, H.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.1-5
    • /
    • 2000
  • This paper presents a new sort of multilayer piezoelectric ceramic transformer for switching regulation power supplies. This piezoelectric transformer operate in the second thickness resonant vibration mode. Accordingly its resonant frequency is higher than 1 NHz, Because output power is low if input and output part of transformer are consisted of single layer, this research suggests a new method, which is consisted of both input and output part of transformer have 2-layered piezoelectric ceramics, The size of transformer is 20 mm in width and length, and 1.4 mm in thickness, respectively, To design a high efficient switching circuit of the transformer, internal circuit parameters were measured and then weve calculated a parameter of inductor nd capacitor to design a driving circuit, Weve used a MISFET and its driver circuit modified a calp oscillator circuit as the primary switching circuit.

  • PDF

Transformer Vibration Analysis for a variation of Load (부하변화에 대한 변압기 진동 분석)

  • 강창구;곽희로;정찬수;조국희;권혁승
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.103-106
    • /
    • 1993
  • This paper describes the modeling of winding vibration for a variation of load and temperature. The structural changes in transformer windings due to heat cause the change of vibration patterns. The vibration signals were detected by the accelerometer on the transformer windings. The real values were compared with estimated value using least-squares method, vibration model was cstablished and with this model, error compared with original signal was less than -50[db]. These results could be applied to diagnosis of incipient failures of the power transformers.

  • PDF

A study on the modelling of power transformer winding vibration (변압기 권선진동의 모형화 연구)

  • Lee, Sung-Ho;Kang, Chang-Gu;Kim, Jae-Chul;Chung, Chan-Soo;Kwak, Hee-Ro;Joo, Byung-Soo;Yoon, Jin-Yeol;Chung, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.216-218
    • /
    • 1994
  • This paper established on vibration model of transformer winding caused, mainly, by load current. We considered the rotations between loads and vibration amplitudes by changing load current in constant temperature and voltage, to get the modeling of transformer winding vibration. Equation between loads and vibration signal's amplitudes using LS approximation mode it possible to predict a vibration signal's amplitude at any load. With this equation, we arc willing to establish the basis data for power transformer diagnosis.

  • PDF

A Study on the Vibration Signal for Detection of Power Transformer Failure (변압기 사고 검출을 위한 진동신호 연구)

  • Kim, Hyun-Sik;Kang, Chang-Goo;Chung, Chan-Soo;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.493-495
    • /
    • 1995
  • Recently, as power transformer capacity is getting larger, vibration noise of transformer would be large and unexpected failuare of transformer give enormous economic loses, So we aquaire vibration signal, which is maked from transformer windings, core that are airtight out box with in insulation oil, and out box. Also we are fixed rated voltage and changing load current, analyize frequency domain of each vibration signals.

  • PDF

Multi-field Coupling Simulation and Experimental Study on Transformer Vibration Caused by DC Bias

  • Wang, Jingang;Gao, Can;Duan, Xu;Mao, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.176-187
    • /
    • 2015
  • DC bias will cause abnormal vibration of transformers. Aiming at such a problem, transformer vibration affected by DC bias has been studied combined with transformer core and winding vibration mechanism use multi-physical field simulation software COMSOL in this paper. Furthermore the coupling model of electromagnetic-structural force field has been established, and the variation pattern of inner flux density, distribution of mechanical stress, tension and displacement were analyzed based on the coupling model. Finally, an experiment platform has been built up which was employed to verify the correctness of model.