• 제목/요약/키워드: Transformer insulating oil

검색결과 113건 처리시간 0.029초

열 열화에 따른 변압기 절연물의 절연특성 분석 (Analysis of Insulation Characteristics for Transformer Insulating Materials According to Thermal Degradation)

  • 이민구;심재명;임경범;이대동
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1688-1693
    • /
    • 2016
  • In this study shall investigate the influence upon the electrical property of transformer oil due to the heat among accelerated heat degradation experiment for a constant hour in the typical insulation oils of mineral base oil, silicon base oil and vegetable oil. In addition, the electric insulation performance of insulation materials in transformer shall be evaluated through the electric property analysis according to the heat degradation of epoxy insulation material, which has been used for electric facilities such as a molded transformer.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

Gas Detector for Hydrogen Dissolved in Transformer Oil

  • Seo Ho-Joon;Hwang Kyu-Hyun;Rhie Dong-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권2호
    • /
    • pp.72-75
    • /
    • 2005
  • In oil-filled equipment such as transformers, partial discharge or local overheating will precede a final shutdown. Accompanied with such problems is a decomposition of insulating material into gases, which are dissolved into the transformer oil. The gases dissolved in oil can be separated with some membranes based on the differences in permeability of membranes to different gases. This paper discuss the permeability characteristics of several membranes for separation hydrogen gas in oil. With result of this paper, it may become possible to detect fault-related gases from transformer oil and predict incipient failures in the

전기용량형 센서를 이용한 변압기 절연유 열화진단용 예방진단기법 개발 (Development of Preventive Diagnosis Techniques for Transformer Oil by Capacitive Sensor)

  • 김주한;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2061_2062
    • /
    • 2009
  • Within serviced period of time in transformer, thermal stress is the most influential parameter affecting the aging behavior of an insulation system. The thermal stress on the insulation system may occur from operation in a high temperature environment due to Joule's heat at winding coils. This paper describes a development of capacitive sensor and preventive diagnosis techniques for electrical insulating oil, widely used for power and distribution transformer. To survey the dielectric properties of the virgin and used mineral insulating oil, we utilized the highly precise measuring system of KRISS. And the results were used to determine the design factors of the sensor. To evaluate diagnosis by the sensor, we performed accelerated aging test about insulating oils. The condition of aged specimens were investigated by measurements of relative permittivity i.e. capacitance change by capacitive sensor.

  • PDF

주상변압기 절연유의 경년열화반응 속도론에 관한 연구 (A Study on the Age Degradation Kinetics of Pole Transformer Oil)

  • 남영우
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권1호
    • /
    • pp.99-105
    • /
    • 1997
  • 본 논문에서는 주상변압기 절연유의 가속열화반응을 수행하였다. 유중가스를 air bubbling 법으로 추출하여 가스크로마토크라프로 성분을 분석하였으며 가스농도는 각 가스의 추출율을 감안하여 보정하였다. 절연재료의 열화는 열분해반응과산화반응에의하여 진행되었으며 두 종류의 반응은 모두 0차반응의 특성을 보였고 탄화수소류, CO+{{{{ { CO}_{2 } }}}} 및 수소가스의 생성속도식을 얻었다. 유중가스 분석과 UV-Visible 분광광도법에 의하여 변압기내의 철심과 동코일이 열화과정에서 촉매역활을 함을 확인하였다.

  • PDF

분광광도법 및 전기분석법을 이용한 절연유의 경년열화 진단에 관한 연구 (A Study on the Aging Diagnosis of Transformer oil by Spectrometric and Electroanalytical Methods)

  • 김경렬;곽희로;윤영자;남궁미옥;이동준
    • 조명전기설비학회논문지
    • /
    • 제12권2호
    • /
    • pp.15-20
    • /
    • 1998
  • 본 연구에서는 주상변압기용 절연유를 대상으로 가속 열화 실험을 수행하면서 절연유의 전기적 특성값인 유전정접과 절연유내의 금속의 양과 절연지의 분해로 생성되는 푸루푸랄양을 조사 연구하였다. 유전정접은 절연유에 변압기 구성재료가 모두 포함된 경우에 많은 영향을 받는 것으로 나타났다. 절연유의 산화에 촉매 작용을 하는 금속의 양을 측정한 결과, 구리의 양은 열화 시간이 지남에 따라서 증가하는 것을 볼 수 있었다. 유전정접과 구리측정값을 비교하여 볼 때 구리측정값이 0.2[ppm] 이상 되면 요주의 범위에 속하는 것으로 볼 수 있다. 푸루푸랄의 양을 측정한 결과 열화시간이 지남에 따라서 푸루푸랄의 양이 증가하는 경향을 보여주었다. 본 연구 결과로 볼 때 주상변압기 예방진단기초자료로 충분히 활용할 수 있었다.

  • PDF

전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석 (Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector)

  • 김재곤;민영제;김목연;곽병섭;박현주
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

UHV변압기에서 유동대전에 의한 사고 방지에 관한 연구 (A Study on the Preventive Method of Accident by Streaming Electrification in UHV Transformer)

  • 박재윤;고희석
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제6권5호
    • /
    • pp.38-44
    • /
    • 1992
  • In this paper, electrification pipe modeled on the oil path that insulating oil flow in the high power transformer is manufactured in order to prevent the accident cause from streaming electrification generated when insulating off flow at a solid-liquid interface, and the streaming current is measured and analyzed according to the shape of oil path in electrification pipe. From the result of this study, the streaming current increases linearly with increasing of a oil velocity and it increases at lower temperature and decreases at higher temperature than [$46^{\circ}C$]. The smoother the flow of insulating oil is the more the streaming current decreases.

  • PDF

유입식 변압기의 열화시간에 따른 절연 열화특성 및 선형회귀법을 이용한 상관관계 분석 (Analysis for Insulating Degradation Characteristics with Aging Time for Oil-filled Transformers and/or Correlation between using Linear Regression Method)

  • 이승민
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.693-699
    • /
    • 2010
  • General transformer's life is known as paper insulation' life. If a transformer is degraded by these aging factors, it is known that electrical, mechanical and chemical characteristics for transformer's oil-paper are changed. When the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. The paper breakdown is accompanied by an increase in the content of furanic compounds within the dielectric liquid. In this paper it is aimed at analysis on correlation between aging characteristics for insulating diagnosis of thermally aged paper. For investigating the accelerated aging process of oil-paper samples accelerating aging cell was manufactured for estimating variation of paper insulation during 500 hours at $140^{\circ}C$ temperature. To derive the results, it was performed analysis such as tensile strength(TS), depolymerization(DP), dielectric strength(DS), relative permittivity, water content(WC) and furan compound(FC) for aged paper. Also for analyzing correlation between insulating degradation characteristics, we used linear regression method. As as results of linear regression analysis, there was a close correlation between TS and DP. WC, FC. But dielectric strength was a weak correlation with aging time.

윤활기유의 조성이 전기절연유의 성능 및 특성에 미치는 영향 (The Effect of Base Oil Composition on Electronic Insulating Oil's Performances)

  • 문우식;전정식
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.181-189
    • /
    • 1998
  • In order to investigate the effect of base oil composition on the electronic insulating oil's performances, an experimental study has been conducted using different oils. Owing to their properties, like lower pour point and gas absorbing, naphthenic base oils are used more often than paraffmic base oils for the electronic insulating oil application. Naphthenic and paraffinic base oils are significantly different in their aromatic hydrocarbon content. In this paper, PXE(para xylyl ethane), LAB(linear alkylbenzene), C13 aromatic hydrocarbon mixture and C17 aromatic hydrocarbon mixture are investigated regarding their influence on insulating oil's performances. According to present study, breakdown voltage decreased with increasing aromatic lydrocarbon content in a deep dewaxed paraffmic base oil. However, any changing in the dissipation factor was not recognizable at small treated level. Furthermore, the volume resistance was not influenced by aromatic hydrocarbon content. The gassing tendency was found as a highly sensible property, changing with treating aromatic hydrocarbons. The higher benzene ring content in the hydrocarbon, the better gassing tendency.

  • PDF