Since fires in uncontrolled environments pose serious risks to society and individuals, many researchers have been investigating technologies for early detection of fires that occur in everyday life. Recently, with the development of deep learning vision technology, research on fire detection models using neural network backbones such as Transformer and Convolution Natural Network has been actively conducted. Vision-based fire detection systems can solve many problems with physical sensor-based fire detection systems. This paper proposes a fire detection method using the latest YOLOv8, which improves the existing fire detection method. The proposed method develops a system that detects sparks and smoke from input images by training the Yolov8 model using a universal fire detection dataset. We also demonstrate the superiority of the proposed method through experiments by comparing it with existing methods.
Click-Through Rate(CTR) 예측은 추천시스템에서 후보 항목의 순위를 결정하고 높은 순위의 항목들을 추천하여 고객의 정보 과부하를 줄임과 동시에 판매 촉진을 통한 수익 극대화를 달성할 수 있는 핵심 기능이다. 자연어 처리와 이미지 분류 분야는 심층신경망(deep neural network)의 활용을 통한 괄목한 성장을 하고 있다. 최근 이 분야의 주류를 이루던 모델과 차별화된 어텐션(attention) 메커니즘 기반의 트랜스포머(transformer) 모델이 제안되어 state-of-the-art를 달성하였다. 본 연구에서는 CTR 예측을 위한 트랜스포머 기반 모델의 성능 향상 방안을 제시한다. 자연어와 이미지 데이터와는 다른 이산적(discrete)이며 범주적(categorical)인 CTR 데이터 특성이 모델 성능에 미치는 영향력을 분석하기 위해 임베딩의 일반화(regularization)와 트랜스포머의 정규화(normalization)에 관한 실험을 수행한다. 실험 결과에 따르면, CTR 데이터 입력 처리를 위한 임베딩 과정에서 L2 일반화의 적용과 트랜스포머 모델의 기본 정규화 방법인 레이어 정규화 대신 배치 정규화를 적용할 때 예측 성능이 크게 향상됨을 확인하였다.
음성 인식은 딥러닝 및 머신러닝 분야에서 활발히 상용화 되고 있는 분야 중 하나이다. 그러나, 현재 개발되고 있는 음성 인식 시스템은 대부분 성인 남녀를 대상으로 인식이 잘 되는 실정이다. 이것은 음성 인식 모델이 대부분 성인 남녀 음성 데이터베이스를 학습하여 구축된 모델이기 때문이다. 따라서, 노인, 어린이 및 사투리를 갖는 화자의 음성을 인식하는데 문제를 일으키는 경향이 있다. 노인과 어린이의 음성을 잘 인식하기 위해서는 빅데이터를 구축하는 방법과 성인 대상 음성 인식 엔진을 노인 및 어린이 데이터로 적응하는 방법 등이 있을 수 있지만, 본 논문에서는 음향적 데이터 증강에 기반한 재귀적 인코더와 언어적 예측이 가능한 transformer 디코더로 구성된 새로운 end-to-end 모델을 제안한다. 제한된 데이터셋으로 구성된 한국어 노인 및 어린이 음성 인식을 통해 제안된 방법의 성능을 평가한다.
텍스트 생성요약은 자연어처리의 과업 중 하나로 긴 텍스트의 내용을 보존하면서 짧게 축약된 요약문을 생성한다. 생성요약 과업의 특성 상 본문의 핵심내용을 요약문에서 보존하는 것은 매우 중요하다. 기존의 생성요약 방법론은 정답요약과의 어휘 중첩도(Lexical-Overlap)를 기반으로 본문의 내용과 유창성을 측정했다. ROUGE는 생성요약 요약모델의 평가지표로 많이 사용하는 어휘 중첩도 기반의 평가지표이다. 생성요약 벤치마크에서 ROUGE가 49점대로 매우 높은 성능을 보임에도 불구하고, 생성한 요약문과 본문의 내용이 불일치하는 경우가 30% 가량 존재한다. 본 연구에서는 정답요약의 도움 없이 본문만을 활용해 생성요약 모델의 성능을 평가하는 방법론을 제안한다. 본 연구에서 제안한 평가점수를 AggreFACT의 라벨과 상관도 분석결과, 다음의 두 가지 경우 가장 높은 상관관계를 보였다. 첫 번째는 Transformer 구조의 인코더-디코더 구조에 대규모 사전학습을 진행한 BART와 PEGASUS 등을 생성요약 모델의 베이스라인으로 사용한 경우이고, 두 번째는 요약문 전체에 걸쳐 오류가 발생한 경우이다.
최근 개인의 성향을 반영한 맞춤형 서비스가 각광 받고 있다. 이와 관련하여 개인의 개성을 인식하고 활용하고자 하는 연구가 지속적으로 이루어지고 있다. 각 개인의 개성을 인식하고 평가하는 방법은 다수가 있지만, OCEAN 모델이 대표적으로 사용된다. OCEAN 모델로 각 개인의 개성을 인식할 때 언어적, 준언어적, 비언어적 정보를 이용하는 멀티 모달리티 기반 인공지능 모델이 사용될 수 있다. 본 논문에서는 비언어적 정보인 사용자의 표정을 기반으로 OCEAN을 인식하는 인공지능 모델에서 영상 데이터에서 얼굴 영역을 추출할 때 지정하는 얼굴 영역 여유값(Margin)에 따른 개성 인식 모델 정확도 성능을 분석한다. 실험에서는 2D Patch Partition, R2plus1D, 3D Patch Partition, 그리고 Video Swin Transformer에 기반한 개성 인식 모델을 사용하였다. 얼굴 영역 추출 시 여유값을 60으로 사용했을 때 1-MAE 성능이 0.9118로 가장 우수하였다. 따라서 개성 인식 모델의 성능을 최적화하기 위해서는 적절한 여유값을 설정해야 함을 확인하였다.
This paper describes the engineering process for analyzing the simulation result and deciding the site in which Distribution STATCON operates more effectively. For this purpose the modeling method of industrial loads, equipments and STATCON was represented. Models of motor, furnace and so on are presented for the modeling of industrial loads. The distribution system models include the parameters of the distribution line and transformer. The models of PESS(Power Electronics Subsystem), controllers and maginetics are consist of STATCON model.
The emergence of generative hyperscale artificial intelligence (AI) has enabled new services, such as image-generating AI and conversational AI based on large language models. Such services likely lead to the influx of numerous users, who cannot be handled using conventional AI models. Furthermore, the exponential increase in training data, computations, and high user demand of AI models has led to intensive hardware resource consumption, highlighting the need to develop domain-specific semiconductors for hyperscale AI. In this technical report, we describe development trends in technologies for hyperscale AI processors pursued by domestic and foreign semiconductor companies, such as NVIDIA, Graphcore, Tesla, Google, Meta, SAPEON, FuriosaAI, and Rebellions.
We propose a method to automatically predict Alzheimer's disease from speech data using the ChatGPT large language model. Alzheimer's disease patients often exhibit distinctive characteristics when describing images, such as difficulties in recalling words, grammar errors, repetitive language, and incoherent narratives. For prediction, we initially employ a speech recognition system to transcribe participants' speech into text. We then gather opinions by inputting the transcribed text into ChatGPT as well as a prompt designed to solicit fluency evaluations. Subsequently, we extract embeddings from the speech, text, and opinions by the pretrained models. Finally, we use a classifier consisting of transformer blocks and linear layers to identify participants with this type of dementia. Experiments are conducted using the extensively used ADReSSo dataset. The results yield a maximum accuracy of 87.3% when speech, text, and opinions are used in conjunction. This finding suggests the potential of leveraging evaluation feedback from language models to address challenges in Alzheimer's disease recognition.
본 논문은 계통 연계 기준인 Low Voltage Ride Through(LVRT) 및 High Voltage Ride Through(HVRT) 기능을 평가하기 위한 시험 장비의 임피던스 설계 방법을 제안한다. LVRT/HVRT 시험 장비는 계통 연계 규정에 명시되어 있는 계통 사고 전압을 일정시간 동안 발생시킬 수 있어야 하며 설계 사양에 맞게 사고전류의 크기를 제한해야 한다. 본 논문에서는 LVRT/HVRT 동작 시 탭 변환 단권변압기 시험 장비의 등가 모델을 기반으로 계통 연계 규정을 만족하기 위한 단권변압기의 임피던스를 설계한다. 제안하는 설계 방법을 이용하여 LVRT/HVRT 시험 시 요구되는 다양한 사고전압을 출력할 수 있는 시험장비의 설계를 위한 탭 간의 임피던스 설계 과정을 설명한다. 제안하는 설계 방법의 타당성을 검증하기 위하여, 10MVA급 LVRT/HVRT 시험 장비의 설계 과정을 설명하고 시뮬레이션을 통하여 확인하였다.
3상 4선식 배전계통에서 특정 수용가가 어떤 변압기로부터 공급되는지를 결정하기 위한 전력선 통신방식을 활용한 식별 방법이 제안된다. 이러한 배전계통에서 전력선 통신 신호의 전달 특성을 분석하기 위한 변압기, 3상 선로, 부하 등에 대한 수치해석 모델을 기술한다. 배전선로에 고주파 전력신호를 주입하여 분석 한 결과 고주파 신호는 배전선에서 전달 능력에 한계 능력을 갖는다. 보통 배전계통의 전력 변압기는 그러한 고주파 신호의 전달을 차폐하게 된다. 이러한 제안된 전송제한 방법을 사용하여 변압기를 식별하는데 적용한다. 새로운 형태의 전력선 변압기 식별시스템이 설계 및 구현된다. 시스템은 전력선 통신 모듈을 바탕으로 송수신기로 구성된다. 이론적 개념을 검증하기 위해서 일반 상업용 건물에서 실험이 행하여진다. 또한 MATLAB Simulink 시뮬레이터를 사용하여 개념에 대한 이해를 위한 시뮬레이션이 수행된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.