DOI QR코드

DOI QR Code

Impedance design of tap changing auto transformer based LVRT/HVRT test device

탭 변환 단권변압기 기반 LVRT/HVRT 시험장비의 임피던스 설계

  • Baek, Seung-Hyuk (Dept. of Electronics Engineering, Hanyang University, ERICA Campus) ;
  • Kim, Dong-Uk (Dept. of Electronics Engineering, Hanyang University, ERICA Campus) ;
  • Yoon, Young-Doo (Dept. of Automotive Engineering, Hanyang University) ;
  • Kim, Sungmin (Dept. of Electronics Engineering, Hanyang University, ERICA Campus)
  • Received : 2020.03.06
  • Accepted : 2020.03.23
  • Published : 2020.03.31

Abstract

This paper proposes an impedance design method of the test device for evaluating Low Voltage Ride Through(LVRT) and High Voltage Ride Through(HVRT) functions. The LVRT/HVRT test device should have ability to generate the fault voltage specified in the grid code for a certain period and to limit the magnitude of the fault current with the design specification. In this paper, the impedance design method for auto transformer is proposed based on a equivalent model of a tap-change auto-transformer during LVRT/HVRT operation. In addition, to generate various fault voltages required the LVRT/HVRT test, tap impedance design in the auto transformer is considered. To verify the validity of the proposed design method, the design process of the 10MVA LVRT/HVRT test device was conducted and the design results was verified through simulation models.

본 논문은 계통 연계 기준인 Low Voltage Ride Through(LVRT) 및 High Voltage Ride Through(HVRT) 기능을 평가하기 위한 시험 장비의 임피던스 설계 방법을 제안한다. LVRT/HVRT 시험 장비는 계통 연계 규정에 명시되어 있는 계통 사고 전압을 일정시간 동안 발생시킬 수 있어야 하며 설계 사양에 맞게 사고전류의 크기를 제한해야 한다. 본 논문에서는 LVRT/HVRT 동작 시 탭 변환 단권변압기 시험 장비의 등가 모델을 기반으로 계통 연계 규정을 만족하기 위한 단권변압기의 임피던스를 설계한다. 제안하는 설계 방법을 이용하여 LVRT/HVRT 시험 시 요구되는 다양한 사고전압을 출력할 수 있는 시험장비의 설계를 위한 탭 간의 임피던스 설계 과정을 설명한다. 제안하는 설계 방법의 타당성을 검증하기 위하여, 10MVA급 LVRT/HVRT 시험 장비의 설계 과정을 설명하고 시뮬레이션을 통하여 확인하였다.

Keywords

References

  1. Connection Code, Korea Electric Power Corporation, 2019.
  2. National Electricity Rules, Australian Energy Market Commission(AEMC), 2018.
  3. IEC 61400 : Wind energy generation systems - Part 21-1: Measurement and assessment of electrical characteristics - Wind turbines 8.5.2.2, IEC Standard 61400-21, 2019.
  4. Generator Fault Ride Through (FRT) Investigation - Stage 1, Transpower New zealand Ltd, 2009.
  5. Essl N. and Renner H., "Influence of lvrt test equipment characteristics on the dynamic performance of a power generation unit quality characteristics of grid connected wind turbines," in Proc. of 23rd International Conference on Electricity Distribution, pp.1133, 2015.
  6. Y. Yang, F. Blaabjerg and Z. Zou, "Benchmarking of Voltage Sag Generators," in Proc. of 38th Annual Conference on IEEE Industrial Electronics Society, pp.943-948, 2012. DOI: 10.1109/IECON.2012.6389164
  7. R. Pollanen, L. Kankainen, M. Paakkonen, J. Ollila and S. Strandberg, "Full-power converter based test bench for low voltage ride-through testing of wind turbine converters," in Proc. of the 2011 14th European Conference on Power Electronics and Applications, pp.1-10, 2011.
  8. C. Wessels, R. Lohde and F. W. Fuchs, "Transformer based voltage sag generator to perform LVRT and HVRT tests in the laboratory," in Proc. of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, pp.T11-8-T11-13, 2010.
  9. Burthi Loveswara Rao, P. Linga Reddy, "An LVRT Solution for DFIG Wind Turbine during Symmetrical Grid Fault by using "Sen" ransformer," Indian Journal of Science and Technology, Vol 8, No.36, 2015. DOI: 10.17485/ijst/2015/v8i36/71809
  10. Rainer Klosse, "High-Voltage-Ride-Through Test System Based on Transformer Switching," in Proc. of 12th international workshop on Large-Scale Integration of Wind Power into Power Systems as well as Transmission Networks for offshore Wind Power Plant, London, 2013.