• Title/Summary/Keyword: Transformation matrix

Search Result 645, Processing Time 0.028 seconds

Reanalysis for Correlating and Updating Dynamic Systems Using Frequency Response Functions (FRF를 이용한 동적 구조 시스템의 구조추정 및 재해석)

  • 한경봉;박선규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.49-56
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrected noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. One simulated system is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise Is also addressed.

  • PDF

Modified finite element-transfer matrix method for the static analysis of structures

  • Ozturk, D.;Bozdogan, K.;Nuhoglu, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper the Modified Finite Element-Transfer Matrix Method, which is the combination of Transfer Matrix Method and Finite Element Method, is applied to the static analysis of the structures. In the method, the structure is divided into substructures thus the number of unknowns that need to be worked out is reduced due to the transformation process. The static analysis of the structures can be performed easily and speedily by the proposed method. At the end of the study examples are presented for ensuring the agreement between the proposed method and classic Finite Element Method.

System Identification of Dynamic Systems Using Structural Reanalysis Method (재해석 기법을 이용한 동적 구조시스템의 System Identification)

  • Han, Kyoung-Bong;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.421-424
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrelated noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. Full scale pseudo dynamic pier test is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise is also addressed.

  • PDF

Characteristics of the Method to Predict Strain Responses from the Measurements of Displacement Responses (변위응답의 측정으로부터 변형률응답을 예측하는 방법의 특성)

  • Lee, Gun-Myung;Ko, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.844-848
    • /
    • 2005
  • A method to predict the strain responses from the measurements of displacement responses is considered. The method uses a transformation matrix which is composed of a displacement modal matrix and a strain modal matrix. The method can predict strains at points where displacements are not measured as well as at displacement measuring points. One of the drawbacks of the strain prediction method is that the displacement responses must be measured at many points on a structure simultaneously. This difficulty can be overcome by measuring the FRFs between displacements at a reference point and other point in sequence with a two channel measuring equipment This procedure is based on the assumption that the characteristics of excitation applied to the structure do not vary with time.

  • PDF

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Thermal Stability of the R Phase of a Rapidly Solidified Ti-47.3Ni (at%) Alloy

  • Moon, Hyo-Jung;Chun, Su-Jin;Nam, Tae-Hyun;Liu, Yinong;Yang, Hong;Kim, Yeon-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2012
  • Transformation behavior of rapidly solidified Ti-47.3Ni (at%) alloy ribbons and thermal stability of the R phase in the ribbons were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction, and transmission electron microscopy. Rapidly solidified Ti-47.3Ni alloy ribbons showed the two-stage B2-R-B19' martensitic transformation behavior. The B2-R transformation in the ribbons was observed even after annealing at 1,223 K, which was attributed to the fact that a specific orientation relationship between $Ti_2Ni$ and matrix in the ribbons is maintained after annealing at 1,223 K. The DSC peak temperature of the B2-R transformation ($T_R^*$) decreased with raising annealing temperature, which was attributed to the increased volume fraction of $Ti_2Ni$, thus causing an increased Ni content in the matrix.

Comparison between Two Coordinate Transformation-Based Orientation Alignment Methods (좌표변환 기반의 두 자세 정렬 기법 비교)

  • Lee, Jung-Keun;Jung, Woo-Chang
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • Inertial measurement units (IMUs) are widely used for wearable motion-capturing systems in the fields of biomechanics and robotics. When the IMUs are combined with optical motion sensors (hereafter, OPTs) for their complementary capabilities, it is necessary to align the coordinate system orientations between the IMU and OPT. In this study, we compare the application of two coordinate transformation-based orientation alignment methods between two coordinate systems. The first method (M1) applies angular velocity coordinate transformation, while the other method (M2) applies gyroscopic angle coordinate transformation. In M1 and M2, the angular velocities and angles, respectively, are acquired during random movement for a least-square algorithm to determine the alignment matrix between the two coordinate systems. The performance of each method is evaluated under various conditions according to the type of motion during measurement, number of data points, amount of noise, and the alignment matrix. The results show that M1 is free from drift errors, while drift errors are present in most cases where M2 is applied. Thus, this study indicates that M1 has a far superior performance than M2 for the alignment of IMU and OPT coordinate systems for motion analysis.

On Testing Equality of Matrix Intraclass Covariance Matrices of $K$Multivariate Normal Populations

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • We propose a criterion for testing homogeneity of matrix intraclass covariance matrices of K multivariate normal populations, It is based on a variable transformation intended to propose and develop a likelihood ratio criterion that makes use of properties of eigen structures of the matrix intraclass covariance matrices. The criterion then leads to a simple test that uses an asymptotic distribution obtained from Box's (1949) theorem for the general asymptotic expansion of random variables.

  • PDF

A study on the Transformation Process of Traditional Small City Structure in Jeollabuk-Do (근대(近代) 도시화(都市化)에 따른 전라도(全羅道) 전통(傳統) 소도읍(小都邑)의 공간구조변화과정(空間構造變化過程) 연구(硏究))

  • Lee, Kyung-Chan
    • Journal of architectural history
    • /
    • v.11 no.3 s.31
    • /
    • pp.21-34
    • /
    • 2002
  • This study is to analyse the transformation process of spatial structure of traditional small city structure in Jeollabuk-Do in the process of modern urbanization between 19th century and the year 2000. The small cities, IM-PI, YONG-AN, YEO-SAN, OK-GOO, GO-SAN, MU-JANG, GUM-MA, GO-BU, which have been local administrative center in CHO-SUN dynasty, have role of local administrative center of subdivision of country-myon, except OK-GOO. The method of this study is to investigate the transformation process of spatial structural elements of with the actual field surveys, the analysis of Gunhyun map made in 1872, land registration maps in 1910s and 2000, and various topological maps. The elements of analysis are the topological site and geographical situation conditions, the urbanized areas, the street systems, the function of streets, the focal points of urban land use, the land use systems, and the location of major facilities such as administration facilities, markets, bus terminals. The analytical point of view and the results are as follows. There is strong relationship between the transformation of internal matrix route system and the growth pattern of urbanized areas, Especially on the contrary to the matrix route with East-West direction which has the role of checking the growth of urbanized area, the South-North direction route acts as the leading line of the growth. The focal points structure of urban land use shows transformation process from the point of central space of administrative district in front of Nae-A, to the access point to administrative district or to the access point to housing and neighborhood commercial area. From the point of functional area structure and major facilities location, line-type commercial area is developed along the line of central axis route and access route to administrative district. Especially direction of the growth of commercial area is strongly connected with the interrelationship between the study area and its neighboring cities. Pattern of commercial district development is varied with the direction of matrix route. That is, commercial district, which shows one side development pattern along the East-West direction route, is developed on both sides of street along the South-North direction route.

  • PDF

Inverse Dynamic Analysis of Flexible Multibody System in the Joint Coordinate Space (탄성 다물체계에 대한 조인트좌표 공간에서의 역동역학 해석)

  • Lee, Byung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.352-360
    • /
    • 1997
  • An inverse dynamic procedure for spatial multibody systems containing flexible bodies is developed in the relative joint coordinate space. Constraint acceleration equations are derived in terms of relative coordinates using the velocity transformation technique. An inverse velocity transformation operator, which transforms the Cartesian velocities to the relative velocities, is derived systematically corresponding to the types of kinematic joints connecting the bodies and the system reference matrix. Using the resulting matrix, the joint reaction forces and moments are analyzed in the Cartesian coordinate space. The formulation is illustrated by means of two numerical examples.