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~ ABSTRACT

A method to predict the strain responses from the measurements of displacement responses is considered. The method uses
a transformation matrix which is composed of a displacement modal matrix and a strain modal matrix. The method can predict
strains at points where displacements are not measured as well as at displacement measuring points. One of the drawbacks of
the strain prediction method is that the displacement responses must be measured at many points on a structure simultaneously.
This difficulty can be overcome by measuring the FRFs between displacements at a reference point and other point in sequence
with a two channel measuring equipment. This procedure is based on the assumption that the characteristics of excitation

applied to the structure do not vary with time. .

1. Introduction

Modern mechanical structures should meet the design
requirements of compactness and light weight. Also
those structures should be proven to have sufficient
dynamic and fatigue strengths. To assure dynamic and
fatigue strengths it is necessary to measure the dynamic
strain distribution on  structures. However, strain
measurements with conventional strain gauges are not
always possible and they are also expensive since the
gauges are not reusable and cannot be moved from point
to point when they have been attached to structures.
Some methods have been developed to predict the
dynamic strain  distribution from displacement
measurements on _structures. Okubo and Yamaguchi
[1] predicted the dynamic strain distribution under
operating condition using the transformation matrix from
displacements to strains. In the method proposed by
Sehlstedt 2], results from hybrid modal analysis are
transformed from the displacement space to the strain
space by use of finite difference schemes. Inversely,
techniques to determine displacements at points of a
vibrating body from measured strains have been
developed [3,4]. These techniques can be applied for
active control of smart composite structures with
embedded fiber optic strain sensors and for end point
control of flexible manipulators.

In this paper, the method to predict the strain

distribution using the transformation matrix is considered.
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Characteristics and limitations of the method are
investigated and a procedure to overcome the limitations
is proposed.

2. Theory

The displacements at points on a vibrating structure,
{u(t)}, can be expressed as a linear combination of
vibrational modes as follows:

{u(@®)} =[Pl{g()} (n
where [@] is the modal matrix whose columns
represent the mode shapes of vibrtional modes and
{g()} modal coordinates. The strains at points on a
structure, {£(f)},

differentiation of the displacement distribution as
follows:

can be expressed by the spatial

{e@} = D((PD{g()}
=[YHq(®)}

where D represents a linear spatial differential operator
and [\P'] is the strain modal matrix whose columns

@

represent the strain mode shapes. From Eq. (1), {g(¢)}
is obtained as

{g(O} =[O] " {u(®)} 3)

Substituting the above equation into Eq. (2),

{e@)} =[¥1[P]" {u()} “

Using the notation,
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(T1=[¥][®]" ©)

we obtain the following equation

{e@®)} =[THu®} (6
In the above equation, [T'] is the transformation matrix

which converts displacements to strains. The equation
means that the strain distribution can be obtained from
the displacement measurements if the transformation
matrix is known. Eq. (6) can be written in detail as
follows:

&,(t)
6‘2(t) _ T2| Tzz TZn

L, L, - T,|jwm®

u, :(t) -

gn (t) Tnl Tn2 Tnn un (t)
When the number of measuring points on a structure is n,
and the number of the considered modes is m, the size of

matrix [D] becomes n x m. If n # m, the pseudo-
inverse matrix, [®]”, can be used instead of [®]™ in
Eq. (5).

[@] = (@] [@])'[®]) ®
As Eq. (5) shows, the transformation matrix is
composed of the displacement modal matrix and the
strain modal matrix of a structure. The modal matrices
can be obtained analytically, or numerically by using a
finite element method, or experimentally. To obtain the
modal matrices experimentally, displacement frequency
response functions{DFRFs) between applied forces and
displacement responses and strain frequency response
functions(SFRFs) between applied forces and strain
responses should be measured through modal testing.
Then the displacement modal matrix is obtained by the
modal analysis of the.DFRFs, and the strain modal
matrix by the modal analysis of the SFRFs. A DFRF is
expressed for viscous damping as follows:

R

H,(w) = ®
* wa -0’ +i2 0,0
Similarly, a SFRF is expressed as follows [5]:
r y/ jr ¢
s (10)

Sy (@) = Z e

where i/, and , @, represent the mode shape

-0’ +i2f 0,0

component of strain mode r at point j and the mode shape
component of displacement mode r at point k,
respectively. Since SFRFs take similar forms as DFRFs,
modal analysis routines which extract mode shape

components from DFRFs can be also used to extract
strain mode shape components from SFRFs.

3. Applicétion :

The strain prediction method using the transformation
matrix was applied to a cantilever beam. The size of the
beam was 300mm x 30mm x 2mm and the density was
7857 kg/m® . As Fig. 1 shows, there are 5 measuring
points with equal spacing on the beam.

To obtain the transformation matrix, the displacement
modal matrix and the strain modal matrix of the beam
were obtained analytically. The DFRF of the beam can
be obtained from the solution of the equation of motion
when subjected to harmonic excitation and is given as
follows [6]:

Y, (x;)Y,(x,)
o’ +i28 0,0

1
H. = — 11
(@) pALZw (1)

where 0, A and L represent the density, the cross-

sectional area and the length of the beam, respectively,
and Y (x) is given as follows:

Y, (x) = cos B,x ~cosh f,x

! o 12
N sin 8, L—sinh §,L (sin B,x —sinh £, x) o
cos 3, L +cosh B, L

where ,B, is related to the eigenvalue of mode r.

Comparing Eq. (11) with the general expression of a
DFREF, Eq. (9), it is found that

1

= —==Y (x, 13
r¢j JP-AZ r( j) ( )

Since the strain on the surface of a thin beam with
thickness 24 is obtained by the relation,

0% u(x)
14
ox’ 9

the strain mode shape component is expressed as
follows:

exX)=h

hoo.
Wo=——=Y (x; (15)
v, «/PTL (x;)

From Eq. (5) with mode shape components expressed in

Eqgs. (13) and (15), the transformation matrix is obtained.
Considering five lower order modes the

transformation matrix calculated from Eq. (5) becomes
(T)1=
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[ —1.0568 0.6297 -0.1861
0.5916 -0.9376 0.5735
-0.1559 0.5716 ~-0.9282
0.0790 ' —0.1599 0.5753
8.7205¢-9 12227e-8 —9.1773¢~9

Examining the above transformation matrix, it is found
that the elements of the last row are very small compared
to other elements. As a result the strain at point 5
becomes very small compared to those at other points
and this agrees with the fact that the strain at the end of a
cantilever beam is zero.

The strain prediction method was verified using
simulation data for the above cantilever beam subject to
a normally distributed random force. The random force
had frequency components between 0 and 500 Hz, and
the Nyquist frequency of the sampled force signal was
2000 Hz. The force was applied at point 2 on the beam
and the strain response was predicted at point 4. Each of
five modes had a damping ratio of 1%. As explained in
Eq. (7), the displacement responses at all measuring
points are needed to predict the strain response at one
point. The displacement responses were calculated
through modal analysis. That is, the response of each
mode due to the applied force was calculated by solving
a second order ordinary differential equation and then the
displacement responses were obtained by the
superposition of the considered modes as follows:

m
u(x,0) = Y, (x)q, () an
=1
The strain response at point 4 was calculated using Eqs.
(14) and (17), and this strain response agreed exactly
with the response predicted by the explained method as
Fig. 2 shows.

One of the drawbacks of the above strain predlctlon
method is that the displacement responses must be
measured at many points on a structure simultaneously.
Therefore, if the number of measuring points is limited
by the measuring equipments available, the method
cannot be applied to the cases where many measuring
points are needed. To overcome this difficulty the
following procedure is proposed. From Eq. (7) the strain
response at point # can be written in detail as follows:

£0) = Tyt () + Tty () + -+ T, (1) (19)
Taking the Fourier transform of the above equation, we
obtain

E;(w)=
(19)
Dividing both sides of the above equation by one of

LU (@) + T,U (@) + -+ T,U,(®)

0.0786 ~0.0201 |
~0.1349 0.0292
0.5366 ~0.0737 (16)
~0.8519 0.3870
~83791e~9 6.8744¢-9]

U; (@) s, for example, U (@), we obtain -

E@ _p L@, ()_H@)
U " U () U, (@)

(20)

That is,

E;(w) = H(w)eU, (@) @1
In measuring H(w) , the FRF between the

displacement response at point 1 and the strain response
at point 7, it is necessary to measure FRFs between the
displacement responses at point 1 and all the other points
simultaneously. However, if we assume that the
-characteristics of excitation applied to the structure under
consideration do not vary, these FRFs would not vary
with time. Therefore it is possible to measure each FRF
in sequence using only two channels of a measuring
equipment. Thus this procedure eliminates the necessity
‘of a measuring equipment with many channels. Once

E;(w) is obtained by Eq. (21), the strain response at

the point can be obtained by-its inverse Fourier transform.

To evaluate the above procedure the same system in
Fig. 1 was considered. A random force was applied at
point 2 and the strain response was predicted at point 4.
In Eq. (20) each U;(@)/U,(@w) was calculated
repeatedly from separate simulations and averaged. The
predicted strain at point 4 showed strong high frequency
noises and consequently there were much differences

between the calculated and predicted responses as Fig. 3
shows. The reason can be attributed to the fact that the

division, U (@) /U, (@) can cause large errors at

frequencies where the magnitude of U (@) is small.

To solve this problem the following procedure was
followed. Since it is usual except special cases such as

nodes that U | (@) is also small at frequencies where
U (@) the ratio U (@)/U, (@) was

neglected at frequencies where .U (@) is smaller

is small;

than a pre-determined value, for example, & times its
largest value. This procedure results in neglect of the

term including U (@) in Eq. (19) when U (@)
is small, which is rational. . Following this procedure,

the accuracy of the predicted strains was much improved
as Fig. 4 shows. In this case averaging was also
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performed and the number of averaging was 100. The
used value of & was 0.002. The accuracy of the
predicted strain did not change much with the value of
a.

4. Conclusion

A method to predict the strain responses from the
measurements of displacement responses is considered
in this paper. The method uses a transformation matrix
which is composed of a displacement modal matrix and a
strain modal matrix. The method can predict strains at
points where displacements are not measured as well as
at displacement measuring points. Using the prediction
method accurate strain responses were predicted for a
cantilever beam subject to a random force. One of the
drawbacks of the above strain prediction method is that
the displacement responses must be measured at many
points on a structure simultaneously. This difficulty can
be overcome by measuring the FRFs between
displacements at a reference point and other point in
sequence with a two channel measuring equipment. This
procedure is based on the assumption that the
characteristics of excitation applied to the structure under
consideration do not vary with time. The procedure was
verified using simulation data for the same cantilever
beam.
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Fig. 1. A cantilever beam with five measuring points.
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Fig. 2. Comparison of the calculated and predicted
strains when the displacements are measured
simultaneously.

S ——
- calculated | |-
~~ — predicted .

* etiain

© D% 02% 0% 028 02 025 05 0% 08 0% 03

N '!'",9(5)" o

Fig. 3. Comparison of the calculated and predicted
strains when pairs of displacements are measured in

sequence.




