• 제목/요약/키워드: Transformation Plasticity

검색결과 144건 처리시간 0.021초

0.15C-6Mn TRIP강의 미세조직과 기계적 성질에 미치는 역변태 열처리의 영향 (Effect of Reverse Transformation Treatment on the Microstructure and Mechanical Properties of 0.15C-6Mn TRIP Steels)

  • 홍호;이오연;송기홍
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.453-459
    • /
    • 2003
  • In this paper the effect of interstitial heat treatment on the microstructure and mechanical properties was examined both in the 0.15C-6Mn steels and 0.15C-6Mn steels added with Nb or Ti. This result will be applied into the development of a steel which has the properties of high strength and high ductility resulted from the transformation induced plasticity. The strength-elongation combination was increased as the holding time was increased when the temperature is at $625^{\circ}C$. However, the strength-elongation combination was decreased sharply as the holding time was increased when the temperature is at $675^{\circ}C$. The tensile strength and elongation of a reverse transformed steels added with Ti or Nb was 93 kg/$\textrm{mm}^2$ and 40%, respectively. This steel shows higher strength more than 10% of the 0.15C-6Mn steel without loss of ductility. The autenite formed from the reverse transformed treatment has a fine lath type, which has the width size of 0.1-0.3 $\mu\textrm{m}$. The TRIP sequence normally transforms the austenite to martensite, however, some of the sequence will produce retained austenite \longrightarrow deformation twin \longrightarrow martensite

0.14C-6.5Mn TRIP강의 기계적 성질에 미치는 제조공정의 영향 (Effect of Fabrication Processes on the Mechanical Properties of 0.14C-6.5Mn TRIP Steels)

  • 이오연;류성일
    • 한국재료학회지
    • /
    • 제11권5호
    • /
    • pp.431-437
    • /
    • 2001
  • 본 연구는 제조공정을 달리한 0.14C-6.5Mn강을 2상영역에서 역변태처리 하였을 때 다량의 잔류오스테나이트를 생성시키기 위한 열처리 조건을 제시하고 잔류오스테나이트의 생성과 관련하여 미세조직 관찰, C, Mn의 분배거동 및 기계적성질을 조사하였다. 잔류오스테나이트는 역변태처리시 오스테나이트내에 C, Mn의 확산으로 농축되어 안정화되며 연성향상에 크게 기여한다. 30%이상의 잔류오스테나이트를 확보하기 위해서는 6457에서 역변태처리하는 것이 효과적이지만, 잔류오스테나이트의 부피 분율과 기계적안정성을 고려하면 $620^{\circ}C$에서 열처리하는 것이 바람직하다. 냉연재의 강도.연성조합값은 3강종 모두 $620^{\circ}C$에서 1시간 역변태처리한 경우 4000kg/$\textrm{mm}^2$정도로 매우 우수하지만 고온에서는 연성감소로 인하여 그 값이 현저하게 저하하였다. 0.14C-6.5Mn계 TRIP강에서 잔류오스테나이트 생성과 기계적성질에 미치는 1.1%Si 첨가효과는 매우 미약하였다.

  • PDF

B-스플라인 곡면기법을 이용한 압출금형 곡면의 표현방법에 관한 연구 (Investigation on the Description Method of Extrusion Die Surface using B-Spline Surface Scheme)

  • 유동진;임종훈
    • 소성∙가공
    • /
    • 제12권2호
    • /
    • pp.142-150
    • /
    • 2003
  • To construct the extrusion die surface, a B-Spline surface scheme based on the cubic B-Spline curve interpolation method is proposed in the present work. The inlet and outlet profiles are described with B-Spline curves by using the centripetal method for uniform parameterization. The interior control points of surface are generated using the derivative characteristics of B-Spline curve. A complete B-Spline surface is constructed by using appropriate coordinate transformation and knot deletion. In the present study, a quantitative measure for the control of surface is suggested by introducing the tangential vector and inclination angles at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for the various types of extrusion die surface.

오스테나이트계 AISI304 스테인레스강판의 프레스 성형특성 (Press Formability of Austenitic AISI304 Stainless Steel)

  • 남재복;류도열;김영석
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.38-50
    • /
    • 1994
  • Fundamental deformation mechanism and plastic behavior of AISI304 austenitic stainless steel were investigated to evaluate press formability. Local and uniform deformation capacity of AISI304 steel were compared to those of ferritic AISI430 steel and Al killed low carbon steel. Nine kinds of austenitic stainless steels having different austenite stabilities were made in laboratory scale to examine the transformation behavior in various deformation mode and variation of mechanical properties. Deformation path and strain distributions along edge corner of commercial sink die were illustrated and effect of austenite stability on press forming of sink die was clarified with experiments using square cup drawing tools.

  • PDF

압축력을 받는 선체판의 경계조건에 따른 탄소성거동에 관한 연구 (A Study on the Elasto-Plasticity Behaviour of a Ship's Plate under Thrust According to Boundary Condition)

  • 고재용;박주신;박영현
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 춘계학술발표회
    • /
    • pp.153-158
    • /
    • 2003
  • Design of general steel structure had applied and achieve elastic design concept mainly so far. Because elastic design supposes that whole structure complies with elasticity formula as that achieve via allowable stress of material is concept that calculate stress distribution of construction about action external load and estimate load of when the maximum stress reaches equally with allowable stress that is established beforehand by maximum safety load of the structure. But, absence that compose actuality structure by deal with external load increase small success surrender and structure hardness falls and tell structure in limit state finally on the whole as showing complicated conduct by interference between these breakdown at buckling by compression. Examined closely about conduct of place since initial buckling through carbon vocal cords transformation finite element analysis series (ANSYS) that place mending condition supposes case that is boundary condition in this investigation.

  • PDF

원통형 보론강을 사용한 가열-급냉공정에서의 열변형 해석 (Thermo-mechanical Simulation of Boron Steel Cylinders during Heating and Rapid Cooling)

  • 서창희;권태하;강경필;최현열;김양수;김영석
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.475-481
    • /
    • 2014
  • Water quenching is one method of cooling after hot forming, which is presently being used for the manufacturing of automobile parts. The formed parts at room temperature are heated and then cooled rapidly in a water bath to produce high strength. The formed parts may undergo excessive thermal distortion during the water quench. In order to predict the distortion during water quenching, a coupled thermo-mechanical simulation is needed. In the current study, the simulation of heating and cooling of boron steel cylinders was performed. The material properties for the simulation were calculated from JMatPro, and the convective heat transfer coefficient was obtained from experimental tests. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation.

저합금강 소재의 열처리해석 기술개발 (Heat Treatment Analysis on Low-Alloy Steel)

  • 최영심;곽시영;최정길;김정태
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.215-223
    • /
    • 2005
  • A numerical analysis program is developed by FDM scheme for the prediction of microstructural transformation during heat treatment of steels. In this study, multi-phase model was used fur description of diffusional austenite transformations in low-alloy hypoeutectoid steels during cooling after austenitization. A fundamental property of the model consisting of coupled differential equations is that by taking into account the rate of austenite grain growth, it permits the prediction of the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimate the amount of martensite also by using K-M eq. In order to simulate the microstructural evolution during tempering process, another Avrami-type eq. was adopted and method for vickers hardness prediction was also proposed. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

자동차용 중공 구동축의 고주파 경화 공정에 대한 수치적 연구 (Numerical Simulation of Induction Hardening Process of Tubular Drive Shaft for Automobile)

  • 강경필;오병기;김용환
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.248-253
    • /
    • 2016
  • Induction hardening process of tubular drive shaft for automobile is simulated by combining the thermal, mechanical, electro-magnetic and metallurgical analysis models. Various material properties for each analysis model are obtained in a consistent way via material properties calculation software, JMatPro®. To consider the scanning process of induction heating, boundary element method is adopted for electro-magnetic field calculation. The distribution of temperature, stress and phase volume fraction are tracked out through the whole process and the effect of scanning velocity is reviewed. The analysis result shows that the critical principal stress is developed at the phase boundary where martensite is formed.

Sn 첨가에 따른 극미세 Ti-Fe-Sn 합금의 미세조직 및 기계적 성질 변화 (Sn Effects on Microstructure and Mechanical Properties of Ultrafine Ti-Fe-Sn Alloys)

  • 한준희;송기안;피동혁;방창욱;김기범
    • 한국주조공학회지
    • /
    • 제28권2호
    • /
    • pp.69-73
    • /
    • 2008
  • In the present study, microstructural evolution and mechanical properties of Ti-Fe-Sn ultrafine eutectic alloys have been investigated. Ultrafine eutectic microstructure consisting of a mixture of ${\beta}$-Ti solid solution and TiFe intermetallic compound homogeneously formed in $(Ti_{70.5}Fe_{29.5})_{100-x}Sn_x$ alloys with x = 0, 1 and 3. Addition of Sn is effective to modify the eutectic colony into the spherical shape with decreasing the lamellar spacing and colony size. This results in enhancing the macroscopic plasticity up to 3.1% of the Ti-Fe-Sn ultrafine eutectic alloys.

CTBA Tubular Beam의 열간 성형해석 및 실험 (Hot Stamping Simulations and Experiments for CTBA Tubular Beams)

  • 서창희;김우성;성지현;박종규;김용식;김영석
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.13-19
    • /
    • 2015
  • For an accurate analysis of hot stamping, a coupled simulation with different aspects of the process(i.e. mechanical, thermal, and phase transformation) is needed. However, coupled simulations are time consuming and costly. Therefore, the current study proposes a simplified method focused on the forming for the hot stamping simulation of a coupled torsion beam axle (CTBA) tubular beam. In this simplified method, non-isothermal conditions were assumed and only conduction was considered, since it represents the majority of the heat transfer during hot stamping. In addition, temperature and strain rate effects were also included. Moreover, an isothermal simulation was conducted and compared with a non-isothermal simulation. Finally, the simulations were verified by experiments. In conclusion, the proposed method is shown to be effective for the development of tube-type parts, and it effectively predicts the deformation of the tubular beam during hot stamping.