• Title/Summary/Keyword: Transferred energy

Search Result 430, Processing Time 0.027 seconds

A Micro-Scale Photovoltaic Energy Harvesting Circuit Using Energy Distribution Technique (에너지 분배 기능을 이용한 마이크로 빛에너지 하베스팅 회로)

  • Lee, Shin-woong;Lee, Chul-woo;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.581-584
    • /
    • 2014
  • In this paper, a micro-scale photovoltaic(PV) energy harvesting system is proposed where an MPPT(Maximum Power Point Tracking) control is implemented using an energy distribution technique. Miniature PV cells output very low energy and low voltages, and thus, they cannot be used to directly power the MPPT controller. In the proposed system, a start-up circuit boosts an internal Vcp, and the boosted Vcp is used to operate the internal MPPT control block. When the Vcp reaches a predefined value, a detector circuit makes the start-up block turn off and provide a power converter with the energy from the PV cell. When the Vcp decreases such that the MPPT controller can not be operated, the energy transferred to the power converter is blocked and the start-up circuit is reactivated. In this way, the MPPT function is achieved by alternately operating the start-up circuit and the power converter using the energy distribution technique, and the harvested energy is transferred to a load through a PMU(Power Management Unit). The proposed circuit is designed in a 0.35um CMOS process and its functionality has been verified through extensive simulations. The designed chip area including pads is $1430um{\times}1110um$.

  • PDF

Assesment of the industrial Wood Waste Disposal Cost through Analysis of the Treatment Flow (사업장계 폐목재의 흐름 분석을 통한 처리비용영향 검토)

  • Kim, Jaenam;Kim, Sujin;Phae, Chaegun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.34-40
    • /
    • 2012
  • This research has looked into the treatment process of wood waste generated from industrial waste within the region and in order to modify the problem that may occurred during the mass balance were analyzed for development of suitable solid waste recycling network regionally. As as result, quite amount of wood waste are being transferred to another region, even though a treatment facility's capacity could bear the total amount of waste generated within the area. Although the wood waste could be treated locally, it is analyzed that amount of wood waste are being transferred due to inefficient and irrational processing system between regions. It is assumed that $CO_2$ generated and loss of unnecessary fuel cost from these inefficient system is quite a lot and in order to modify this disorganized system, it will not inevitable to treat the waste based on the characteristics of each regions. Also, the wood waste recycling system should be studied with the efficient, environmental friendly processing and delivering network by minimized transfer distance and local systemizing the waste treatment system.

Cluster-Based Mobile Sink Location Management Scheme for Solar-Powered Wireless Sensor Networks

  • Oh, Eomji;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a sink-location management and data-routing scheme to effectively support the mobile sink in solar-powered WSN. Battery-based wireless sensor networks (WSNs) have a limited lifetime due to their limited energy, but solar energy-based WSNs can be supplied with energy periodically and can operate forever. On the other hand, introduction of mobile sink in WSNs can solve some energy unbalance problem between sink-neighboring nodes and outer nodes which is one of the major challenges in WSNs. However, there is a problem that additional energy should be consumed to notify each sensor node of the location of the randomly moving mobile sink. In the proposed scheme, one of the nodes that harvests enough energy in each cluster are selected as the cluster head, and the location information of the mobile sink is shared only among the cluster heads, thereby reducing the location management overhead. In addition, the overhead for setting the routing path can be removed by transferring data in the opposite direction to the path where the sink-position information is transferred among the heads. Lastly, the access node is introduced to transmit data to the sink more reliably when the sink moves frequently.

Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator (마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템)

  • Yoon, Bo-Kyung;Lee, Jun-Young;Jun, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

An Investigation of Power Flow Mechanism in Beam-plate Built-up Structures with an Energy-absorbing Plate (보-판 결합 구조물에서 에너지 흡수체로 작용하는 판의 특성에 따른 파워 전달 특성에 관한 연구)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.55-64
    • /
    • 2007
  • In the built-up structure consisting of a stiff beam and a flexible plate, Grice showed that the plate behaves as an energy absorber in narrow frequency bands(called plate blocking effect). This paper deals with such beam-plate coupled structures, where the plate is an energy absorber and the excited beam is an energy path. It is found that such energy dissipation can occur in the relatively broad bands, if different stiffnesses are used in the rectangular plate. It was experimentally verified by Heckl that the energies in terms of one-third octave band averages transferred to the plate(or dissipated in the plate) increase for increased plate damping. This Paper, however, shows that the energy absorption suddenly reduces at the certain narrow frequency bands where the plate damping effect upon the coupled beam is maximum. Also, in order to minimize energy transfer through the beam in terms of one-third octave band averages, it is advantageous to increase the plate damping closer to the excitation point All these results are based on the wane method.

Surface Treatment to Inhibit Water-induced Decomposition and δ-phase Formation of Perovskite Thin Films (수분에 의한 페로브스카이트 박막의 분해 및 δ-phase 결정 형성을 억제하기 위한 표면 처리 기술)

  • Son, Kyung Nan;Naqvi, Syed Dildar Haider;Jeong, In Young;Ahn, SeJin;Chang, Hyo Sik
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2021
  • Perovskite solar cells (PSCs) are currently attracting attention as a promising source of photovoltaic power generation for their rapid increase in efficiency within a short research period. However, the 2-step deposition method, which has been considered as a proper film fabrication route in commercialization point of view of PSC, requires a complicated control of environment to achieve high efficiency because each step of the process are affected by humidity in different manner. It is clearly a large hurdle for this technic to be transferred to industrialization. In this study, we developed a simple surface treatment by which high quality perovskite films can be fabricated through 2-step deposition method in a relatively wide humidity range without complicated humidity control at each step.

Effect of Reductive Salts on Dissolution of ${\alpha}-Fe_2O_3$ in Acidic Solutions (산성용액 내에서${\alpha}-Fe_2O_3$의 용해에 대한 환원성 염의 효과)

  • Jeong-Ik Lee;Lee-Mook Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.194-200
    • /
    • 1983
  • Effect of metallic salts added to the ${\alpha}-Fe_2O_3-HCl\;or\;{\alpha}-Fe_2O_3-H_2SO_4$ reaction systems were investigated by colorimetric and gravimetric determinations. While reductive salts exhibited remarkably enhanced reaction rate, non-reductive salts showed inhibitive results. We supposed that the improvement of dissolution rate of ${\alpha}-Fe_2O_3$ by the addition of $FeCl_2$, a reductive salt, to the ${\alpha}-Fe_2O_3-HCl$ system can be attributed to the formation of chloro-bridge between $Fe^{3+}\;and\; Fe^{2+}$, and therefore some partial electronic charge transfer from $Fe^{2+}\;to\;Fe^{3+}$ on the surface of ${\alpha}-Fe_2O_3$ will be easily achieved through the bridged bond. The transferred charge to the surface will reduce the positive charge of initial $Fe^{3+}$, and also result to reduce the lattice energy of that site. Assuming tothat there is a linear relationship between the lattice energy change and the change of activation energy of the reaction system, the transferred partial electronic charge to $Fe^{3+}$ of ${\alpha}-Fe_2O_3$ surface was calculated to be ca. 0.36e.

  • PDF

An Asymptotic Analysis of Excess Enthalpy Flame (초과엔탈피 화염의 점근 해석)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.135-137
    • /
    • 2014
  • Excess enthalpy flame propagating an porous inert medium, which recirculate exhaust heat to the upstream cold mixture, is theoretically analyzed. Using the activation-energy asymptotics, the flame structure is divided into the thin reaction and the gas-phase preheat zone, as is traditionally done. Ahead and behind of the two, there exist an outer preheat zone, where heat is convectively transferred from solid to gas, and a downstream re-equilibrium zone, where thermal equilibrium between phases is established. Asymptotic solutions of species and energy equations in each zone are obtained and then matched to each other, and finally the mass burning rate is obtained as a function of the flame propagation velocity with respect to the solid phase and physical properties of gas and solid.

  • PDF

Load Disturbance Compensation for Stand-alone Inverters Using an Inductor Current Observer

  • Choe, Jung-Muk;Moon, Seungryul;Byen, Byeng-Joo;Lai, Jih-Sheng;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.389-397
    • /
    • 2017
  • A control scheme for stand-alone inverters that utilizes an inductor current observer (ICO) is proposed. The proposed method measures disturbance load currents using a current sensor and it estimates the inductor current using the ICO. The filter parameter mismatch effect is analyzed to confirm the ICO's controllability. The ICO and controllers are designed in a continuous-time domain and transferred to a discrete-time domain with a digital delay. Experimental results demonstrate the effectiveness of the ICO using a 5-kVA single-phase stand-alone inverter prototype. The experimental results demonstrate that the observed current matches the actual current and that the proposed method can archive a less than 2.4% total harmonic distortion (THD) sinusoidal output waveform under nonlinear load conditions.

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.