• Title/Summary/Keyword: Transfer function 전달함수

Search Result 715, Processing Time 0.028 seconds

The identification of Raman spectra by using linear intensity calibration (선형 강도 교정을 이용한 라만 스펙트럼 인식)

  • Park, Jun-Kyu;Baek, Sung-June;Park, Aaron
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.

Modeling of the dynamic behavior of a 12-V automotive lead-acid battery (12V 차량용 납축전지의 동적 거동 모델링)

  • Kim, Sung Tae;Lee, Jeong Bin;Kim, Ui Seong;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2013
  • For the optimal design of the vehicle electric system, it is important to have a reliable modeling tool to predict the dynamic behavior of the automotive battery. In this work, a one-dimensional modeling was carried-out to predict the dynamic behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experiment data of the dynamic behaviors of the lead-acid batteries of two different capacities that were mounted on the automobiles manufactured by Hyundai Motor Company. The discharge behaviors were measured with various discharge rates of C/3, C/5, C/10, C/20 and combination. And dynamic behaviors of charge and discharge were measured. The voltage curves from the experiment and simulation were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, and the current density within the electrodes could be predicted as a function of charge and discharge time.

Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image (디지털 흉부영상에서 자동노출제어 및 감도변화를 이용한 영상품질의 정량적인 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.275-283
    • /
    • 2013
  • The patient radiation dose is different depending on selection of Ion chamber when taking Chest PA which using AEC. In this paper, we studied acquiring the best diagnostic images according to selection of Ion chamber on AEC mode as well as minimizing patient radiation dose. Experimental methods were selection of Ion chamber and change of sensitivity under the same conditions as Chest PA projection. At AEC mode, two upper ion chambers sensors and one lower ion chamber sensor were divided into 7 cases according to selection of on/off. after measuring five times respectively, we obtained average value and calculated exposure dose. Image assessment was done with measured Modulation Transfer Function, Peak Signal to Noise Ratio, Root Mean Square, Signal to Noise Ratio, Contrast to Noise Ratio, Mean to Standard deviation Ratio respectively. In exposure assessment results, selection of two upper chambers was the lowest. In resolution assessment results, image of two upper chambers had the second high spatial frequency at sensitivity at 625(High) was 1.343 lp/mm. RMS value of image selecting two upper chambers was low secondly. SNR, CNR, MSR were the high value secondly. As the sensitivity was increased, radiation dose was decreased but better image could be obtained on image quality. In order to obtain the best medical images while minimizing the dose, usage of two upper ion chambers is considered to be clinically useful at sensitivity 625(High).

Relation between sound pressure level and auditory distance perception in anechoic room (무향실에 있어서의 음압레벨과 거리정위와의 관계)

  • Kim, Hae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1201-1206
    • /
    • 2009
  • According to a lot of investigations, distance perception is influenced by many important cues such as sound pressure level, reflections from the room surface, binaural difference (ITD and ILD), a kind of sound source, and head related transfer functions (HRTF). Two psychoacoustical experiments on auditory distance perception were conducted to examine the effectiveness of the sound pressure level loudness as one of the physical cues in the auditory distance perception under a constant loudspeaker's output level and a constant sound level at the subject's position in the absence of reflections in an anechoic room. Our experimental results showed that the perceived distance of sound image is closer than actual sound source distance with the constant loudspeaker's output level and the constant sound level. Futhermore, the perceived distance of a sound image with constant sound level increased when the actual distance increases up to approximately 2 m while the perceived distance saturated when the sound source distance exceed 2 m. On the other hand, when the condition of loudspeaker's output level was kept constantly, the perceived distance of sound image increased up to around 3m, longer than the conditions of constant sound level at the subject's position. We found that the change in the loudness as a function of distance plays an important role in the auditory distance perception in the absence of reflections..

Sensitivity Analysis of Input Parameters for a Dynamic Food-Chain Model DYNACON (동적섭식경로모델 DYNACON에 대한 입력변수의 민감도분석)

  • Hwang, Won-Tae;Lee, Geun-Chang;Han, Moon-Hee;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • The sensitivity analysis of input parameters for a dynamic food chain model DYNACON was conducted as a function of deposition date for the long-lived radionuclides $(^{137}Cs,\;^{90}Sr)$. Also, the influence of input parameters for the short and long-terms contamination of selected foodstuffs (cereals, leafy vegetables, milk) was investigated. The input parameters were sampled using the LHS technique, and their sensitivity indices represented as PRCC. The sensitivity index was strongly dependent on contamination period as well as deposition date. In case of deposition during the growing stages of plants, the input parameters associated with contamination by foliar absorption were relatively important in long-term contamination as well as short-term contamination. They were also important in short-term contamination in case of deposition during the non-growing stages. In long-term contamination, the influence of input parameters associated with foliar absorption decreased, while the influence of input parameters associated with root uptake increased. These phenomena were more remarkable in case of the deposition of non-growing stages than growing stages, and in case of $^{90}Sr$ deposition than $^{137}Cs$ deposition. In case of deposition during growing stages of pasture, the input parameters associated with the characteristics of cattle such as feed-milk transfer factor and daily intake rate of cattle were relatively important in contamination of milk.

  • PDF

Impact of Group Delay in RF BPF on Impulse Radio Systems (임펄스 라디오 시스템에서 RF 대역 통과 필터의 군지연 영향 분석)

  • Myoung Seong-Sik;Kwon Bong-Su;Kim Young-Hwan;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.380-388
    • /
    • 2005
  • This paper presents analysis results of the effects of RF filter characteristics on the system performance of impulse radio. The impulse radio system transmits modulated pulses having very short time duration and information can be extracted in receiver side based on cross-correlation between received and transmitted pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious system performance degradation. In general, RF bandpass filters inevitably cause group delay difference to the signal passing through the filter which is proportional to its skirt characteristic due to its resonance phenomenon. For time as well as frequency domain analysis, small signal scattering parameter $S_{21}$ and its Fourier transform are used to characterize output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on convolution integral between input pulse and filter transfer function, and resulting BER performances in the BPM and PPM based impulse radio system are calculated.

Enhancement of SNUF Active Trailing-edge Flap Blade Mechanism Design (SNUF뒷전 플랩 블레이드 메커니즘의 설계 개선)

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.645-653
    • /
    • 2013
  • Seoul National University flap(SNUF) blade is a small-scale rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and geometrically exact one-dimensional beam analysis, and its material configuration was finalized. A flap-deflection angle of ${\pm}4^{\circ}$ was established as the criterion for enhanced vibration reduction based on an earlier simulation. The flap-linkage mechanism was designed and static bench tests were conducted for verifying the performance of the flap-actuation mechanism. Different versions of test beds were developed and tested with the designed flap and the selected APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High-frequency experiments were conducted for evaluating the performance, and the transfer function of the test bed was determined experimentally. With the static tests almost complete, the rotor power required for testing the blade in a whirl tower (centrifugal environment) was calculated, and further preparations are underway.

Changes in Spatial Resolution at Position of the Detector in Digital Mammography System (디지털 엑스선유방촬영장치에서 검출기 위치에 따른 공간분해능의 변화)

  • Kim, Hye-Min;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • X-ray mammography is the most effective method for the diagnosis of calcified lesions of various breast diseases. To reduce patient dose and to obtain optimal image required for diagnosis, the performance of the mammography system should be maintained continuously. Because the target (anode) angle of the X-ray tube is measured from the central X-ray, the effective angle can be slightly different in view of the position on the detector, which can result in degrading spatial resolution of the imaging within the field of view. In this study, we measured the MTF to examine spatial resolution for positions on the detector in the digital mammography system. For a tungsten wire of $50{\mu}m$ diameter, the highest spatial frequency was obtained. It meant that a wire diameter for measuring MTF through LSF should be small compared to the pixel size of the detector used in the mammography system. The spatial resolution showed slightly different performance according to positions on the detector. The center position gave the best spatial resolution and positions away from the center showed the degraded performance although the difference of the spatial resolution was small. The effective focal spot size of the full width at half maximum also showed similar result. It concluded that the slightly increase of the effective focal spot size gave the degradation of the spatial resolution for positions on the detector.

Analysis of Co-authorship Network in the Lifelong Vocational Education and Training: An Analysis of Papers Published from 2000 to 2015 in Korea (평생 직업교육훈련 분야의 공저자 네트워크 분석: 2000년~2015년 국내 학술논문을 중심으로)

  • Park, Ji-Young;Lee, Hee-Su
    • Journal of vocational education research
    • /
    • v.35 no.6
    • /
    • pp.85-112
    • /
    • 2016
  • This study aims to identify the cooperative relations among researchers and their network structures based on the academic papers published in the field of lifelong vocational education and training from 2000 to 2015. Authors in three representative journals, 'Journal of Lifelong Education', 'Journal of Vocational Education Research', and 'Korea Research Institute for Vocational Education & Training,' during the periods, were selected and co-authorship network analysis was applied using NetMiner 4.0 in order to find the social relation among researchers and their academic influences. The results showed that the research productivity in the field of lifelong vocational education and training forms a shape of the power function where there exist components called, 'detailed research groups.' This network structure represents characteristics of a small world. In addition, the centrality analysis suggest authors with high centrality serve as co-authors who play as a central role on the network and exchange information with other researchers, while those with high betweenness centrality serve as a channel where they transfer knowledge and information among research groups. Increasing member of co-authorship has positively contributed to the opportunity and development of cooperative research among researchers in the field of lifelong vocational education and training. However it is recommended co-authorship be formed more heterogeneously instead of a few researches centrally dominate co-authorship. Various researchers should continually conduct research for good research performances.

FHD Flexible Endoscopy Design Using Wedge Prism (Wedge Prism을 이용한 FHD급 연성 내시경 광학계 설계)

  • Park, Sung-Woo;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.295-302
    • /
    • 2022
  • In this paper, a wedge prism application method was studied to design a full-high-definition (FHD)-class high-resolution flexible endoscope. In the case of the conventional flexible endoscope optical system, the F number is made large or a liquid lens is applied to obtain the same imaging performance in a wide depth of field. However, there is a problem in that the diameter of the optical system increases because an additional light guide and equipment are required. To solve this problem, two wedge prisms were applied to the flexible endoscope optical system to adjust the image distance for each object distance. First, two wedge prisms were symmetrically placed on the designed endoscopic optical system. An image distance satisfying the target imaging performance according to each objective distance was derived. Next, the wedge prism decenter value for controlling the image distance was derived. By combining these two data, a wedge prism decenter value that satisfied the target imaging performance at each object distance was applied in multi configurations. As a result of the optimal design applied with the wedge prism, a target imaging performance of more than 20% of the modulation transfer function for a resolution of 178 cycles/mm was satisfied in the entire depth of field of 100 mm-7 mm.