• Title/Summary/Keyword: Transfer coefficient

Search Result 2,397, Processing Time 0.033 seconds

Relationship between Attenuation of Impact Shock at High Frequency and Flexion-Extension of the Lower Extremity Joints during Downhill Running

  • Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Objective: The purpose of this study was to determine the interrelationship between ranges of motion of the knee and ankle joints on the sagittal plane and the attenuation magnitude of impact shock at high frequency (9~20 Hz) in the support phase during downhill running. Method: Fifteen male heel-toe runners with no history of lower extremity injuries were recruited for this study (age, $25.07{\pm}5.35years$; height, $175.4{\pm}4.6cm$; mass, $75.8{\pm}.70kg$). Two uniaxial accelerometers were mounted to the tuberosity of tibia and sacrum, respectively, to measure acceleration signals. The participants were asked to run at their preferred running speed on a treadmill set at $0^{\circ}$, $7^{\circ}$, and $15^{\circ}$ downhill. Six optical cameras were placed around the treadmill to capture the coordinates of the joints of the lower extremities. The power spectrum densities of the two acceleration signals were analyzed and used in the transfer function describing the gain and attenuation of impact shock between the tibia and the sacrum. Angles of the knee and ankle joints on the sagittal plane and their angle ranges were calculated. The Pearson correlation coefficient was used to test the relationship between two variables, the magnitude of impact shock, and the range of joint angle under three downhill conditions. The alpha level was set at .05. Results: Close correlations were observed between the knee joint range of motion and the attenuation magnitude of impact shock regardless of running slopes (p<.05), and positive correlations were found between the ranges of motion of the knee and ankle joints and the attenuation magnitude of impact shock in $15^{\circ}$ downhill running (p<.05). Conclusion: In conclusion, increased knee flexion might be required to attenuate impact shock during downhill and level running through change in stride or cadence while maintaining stability, and strong and flexible ankle joints are also needed in steeper downhill running.

Analysis on the Ventilation Performance of Single-span Tomato Greenhouse with Roof Windows (천창을 설치한 토마토 재배 단동 온실의 환기성능 분석)

  • Nam, Sang-Woon;Kim, Young-Shik;Both, Arend-Jan
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.78-82
    • /
    • 2011
  • Ventilation rates, inside and outside weather data were measured in a arch-shape single-span plastic greenhouse growing tomatoes. On the roof of the experimental greenhouse, round windows which have a diameter of 0.6 m were installed at intervals of 8m. It showed that the number of air changes in this greenhouse were average 0.17 volumes per minute and in the range of 0.02 to 0.32 volumes per minute. These air changes are insufficient to meet the recommended ventilation rate for commercial greenhouses, and it is estimated that interval of 6 m is appropriate for spring or fall season. For summer season, it is necessary to narrow the space or to enlarge the open area of roof windows. Using the heat balance model, the evapotranspiration coefficients of greenhouse tomatoes were estimated from experimental ventilation data, overall heat transfer and solar radiation. It showed that the evapotranspiration coefficients were average 0.62 and in the 0.39 to 0.85 range. We suggest applying 0.6 as the evapotranspiration coefficient in design of ventilation for the single-span tomato greenhouses.

An Experimental Study on the Improvement of Insulation Performance in Old University Buildings and Economic Evaluation (노후화된 대학 건물의 단열성능 향상 실험 및 경제성 평가)

  • Lee, Jeongmin;So, Wonho;Cho, Kyungchan;Choi, Dongnyeok;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.287-297
    • /
    • 2020
  • This study examined ways of improving the internal insulation performance of aging university buildings, and to enhance the convenience of occupants in university buildings and the insulation effect of aging buildings. This research was conducted to solve the problem of continuous requests for improving the insulation performance of office workers in the Nehemiah Hall building of Handong University. The results showed that the internal temperature of Nehemiah Hall was low compared to the internal temperature of the adjacent building. Considering the characteristics of the building, the university chose insulating materials under the theme of internal insulation. The experiment was conducted by installing internal wall insulation used in the market by producing a model room that miniaturized the university professor's office. Based on the experimental results, an economic evaluation was conducted to analyze the insulation effect by measuring the heating time and actual heat transmission coefficient. An economic evaluation was conducted by experiment and theory and on a winter and summer basis. According to the research, when an Isopink (30 T) was introduced as an internal insulation material in 60 offices of Nehemiah Hall, it could save up to 1,071,600 won in total during the winter season and 109,200 won during the summer season.

Succinate Transport in Rabbit Renal Basolateral Membrane Vesicles (가토 근위세뇨관 Basolateral Membrane Vesicle에서 Succinate 이동 특성)

  • Kim, Yong-Keun;Bae, Hae-Rahn;Rhim, Byung-Yong
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.307-318
    • /
    • 1988
  • Properties of succinate transport were examined in basolaterat membrane vesicles (BLMV) isolated from rabbit renal cortex. An inwardly directed $Na^+$ gradient stimulated succinate uptake and led to a transient overshoot. $K^+,{\;}Li^+,{\;}Rb^+$ and choline could not substitute for $Na^+$ in the uptake process. The dependence of the initial uptake rate of succinate on $Na^+$ concentration exhibited sigmoidal kinetics, indicating interaction of more than one $Na^+$ with transporter Hill coefficient for $Na^+$ was calculated to be 2.0. The $Na^+-dependent$ succinate uptake was electrogenic, resulting in the transfer of positive charge across the membrane. The succinate uptake into BLMV showed a pH optimum at external pH $7.5{\sim}8.0$, whereas succinate uptake into brush border membrane vesicles (BBMV) did not depend on external pH. Kinetic analysis showed that a Na-dependent succinate uptake in BLMV occurred via a single transport system, with an apparent Km of $15.5{\pm}0.94{\;}{\mu}M$ and Vmax of $16.22{\pm}0.25{\;}nmole/mg{\;}protein/min$. Succinate uptake was strongly inhibited by $4{\sim}5$ carbon dicarboxylates, whereas monocarboxylates and other organic anions showed a little or no effect. The succinate transport system preferred dicarboxylates in trans-configuration (furmarate) over cis-dicarboxylates (maleate). Succinate uptake was inhibited by the anion transport inhibitors DIDS, SITS and furosemide, and $Na^+-coupled$ transport inhibitor harmaline. These results indicate the existence of a $Na^+-dependent$ succinate transport system in BLMV that may be shared by the other Krebs cycle intemediates. This transport system seems to be very similar to the luminal transport system for dicarboxylates.

  • PDF

A Study on the Change of Monthly Patterns of Bus Passenger Demand According to Bus Route Change (시내버스 노선변경에 따른 승객수요의 월별패턴 변화에 관한 연구)

  • Seo, Young-Woo;Kim, Ki-Hyuk
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.81-90
    • /
    • 2008
  • Bus passengers need some time to adapt to the changed bus route or free bus transfer system which is part of the public transportation system restructuring plan. This research is focused on the characteristics of monthly patterns of bus passengers. The period of stabilization of bus passenger demand after the rearrangement of bus route system by a time series were analysed. In order to look into the characteristics of bus passenger demand by month, data on the number of monthly bus passengers of recent five years in metropolitan cities across the nation was collected. Kendall's coefficient of concordance is used to test whether the cities showed concordance with respect to the number of monthly bus passengers during a period of five years. The study collected and performed a time series analysis of data on the number of monthly bus passengers during the past ten years in Daegu metropolitan area which carried out a new bus route plan in February 2006. The number of monthly bus passengers in 2006 was estimated using the time series analysis. The city of Daegu found that after six months the estimated and actual values displayed a similar pattern. This result can be applied to other cities in estimating the passenger demands in the future.

Analytical and Numerical Model Study to Predict the Temperature Distribution Around an Underground Food Cold Storage Pilot Cavern (냉동저장 공동 주변의 온도분포 예측을 위한 해석해 및 수치모델 적용에 관한 연구)

  • 이대혁;김호영
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.142-151
    • /
    • 2002
  • Claesson(2001)'s analytical solution, and two numerical models with Dirichlet and Neuman interior boundary condition respectively were investigated to estimate the transient temperature distribution with distances from the Taejon underground food cold storage pilot cavern. Claesson's solution, which is based on constant temperature boundary condition at the rock wall during a temperature decline step, showed relatively good agreement with temperature measurements in the rock mass in order of average error difference, 0.89$\^{C}$ without any adjustments on laboratory thermal properties to represent the rock mass. For the numerical model with heat flux through the rock wall, a boundary condition setting technique was newly proposed to overcome the difficulty of prescribing variable convective heat tranfer coefficient and far-field air temperature inside the cavern as they may be certainly changed according to the cooling-down time. The results showed also good agreement with measurements in order of average error difference, 1.58$\^{C}$, and were compared to those of the numerical model with fixed temperature at the rock wall. Finally, the most proper procedure to precisely predict the temperature profile around a cavern was proposed as a series of analysis steps including an analytical exact solution and numerical models.

A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods (영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구)

  • Song Nam-Kyu;Koh Kawng-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF

Fundamental Heat Analysis about the Thermoelectric Generation System Using the Waste Heat of Exhaust Gas from Ship (선박의 배기가스 폐열을 활용한 열전발전시스템에 관한 기초 열해석)

  • Kim, Myoung-Jun;Ga, Gwang-Jin;Chea, Gyu-Hoon;Kim, In-Seup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.583-592
    • /
    • 2016
  • IMO (International Maritime Organization) in the UN (United Nations) set up that aim at reducing $CO_2$ emission from ship by up to 30 percent until 2030. The final purpose of this study is the development of marine thermoelectric generation system using waste heat from vessel of internal combustion engines. Before the development of marine thermoelectric generation system, this paper carried out the fundamental heat analysis of marine thermoelectric generation system. It was able to obtain the valuable results about the efficiency improvement of the thermoelectric generation system. The results is as follows : 1) It was confirmed that the efficiency of thermoelectric generation system improves to 8.917 % with increasing the temperature difference of peltier module by reducing the temperature difference between peltier module and heat source at the hot side. 2) System efficiency according to change in the external load resistance was confirmed that the change width of about 6 % which does not significantly occur. 3) System efficiency in the case stainless steel at the same condition is 8.707 %. System efficiency could be confirmed that the stainless steel is higher than duralumin (8.605 %), copper (8.607 %).

Diffusion-weighted and Dynamic Contrast-enhanced MRI of Metastatic Bone Tumors: Correlation of the Apparent Diffusion Coefficient, $K^{trans}$ and $v_e$ values (골전이암의 확산강조영상과 역동적 조영증강 자기공명영상: 겉보기 확산계수, $K^{trans}$$v_e$ 값들의 상관관계)

  • Koo, Ji Hyun;Yoon, Young Cheol;Kim, Jae Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • Purpose : To investigate whether quantitative parameters derived from Diffusion-weighted magnetic resonance imaging (DW-MRI) correlate with those of Dynamic contrast-enhanced MRI (DCE-MRI). Materials and Methods: Thirteen patients with pathologically or clinically proven bony metastasis who had undergone MRI prior to treatment were included. The voxel size was $1.367{\times}1.367{\times}5mm$. A dominant tumor was selected and the apparent diffusion coefficient (ADC) value and DCE-MRI parameters were obtained by matching voxels. DCE-MRI data were analyzed yielding estimates of $K^{trans}$ (volume transfer constant) and $v_e$. (extravascular extracellular volume fraction). Statistical analysis of ADC, $K^{trans}$, and $v_e$ value was conducted using Pearson correlation analyses. Results: Fifteen lesions in pelvic bones were evaluated. Of these, 11 showed a statistically significant correlation (P<0.05) between ADC and $K^{trans}$. The ADC and $K^{trans}$ were inversely related in 7 lesions and positively related in 4 lesions. This did not depend on the primary cancer or site of metastasis. The ADC and $v_e$ of 9 lesions correlated significantly. Of these, 4 lesions were inversely related and 5 lesions were positively related. Conclusion: Unlike our theoretic hypothesis, there was no consistent correlation between ADC values and $K^{trans}$ or between ADC values and $v_e$ in metastatic bone tumors.

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.