• Title/Summary/Keyword: Transfer Points

Search Result 445, Processing Time 0.032 seconds

Active Control of Propagated Noise through Opening of Enclosures Surrounding a Noise Source (음원을 둘러싼 인클로저 개구부를 통해 전파되는 소음의 능동 제어)

  • Lee, Hanwool;Hong, Chinsuk;Jeong, Weuibong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Enclosures are widely used to alleviate the contribution of machinery noise. It has been long concerned with the noise transmission through the access openings of the enclosures. In this study, we investigate active noise control technology for reduction of the transmission. A numerical model based on the acoustic boundary element method is first established. Using the numerical model, the acoustic transfer functions of the field points over the opening to the primary source at arbitrary locations are estimated. The feedforward control to minimize the acoustic power through the opening is then numerically implemented. The controller drives the secondary source to destructively interfere the noise transmission through the opening. Finally, a parametric study is conducted to evaluate the effects of the location and the number of the microphones on the control performance. Furthermore, the effects of the location of the secondary source on the performance of active noise control are investigated. It is followed that the control system implemented in this study leads to a significant reduction of about 31.5 dB in the sound power through the opening using only one secondary source located at the optimized position.

Theoretical Study on the Reaction Mechanism of Azacyclopropenylidene with Epoxypropane: An Insertion Process

  • Tan, Xiaojun;Wang, Weihua;Li, Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2717-2722
    • /
    • 2014
  • The reaction mechanism between azacyclopropenylidene and epoxypropane has been systematically investigated employing the second-order M${\o}$ller-Plesset perturbation theory (MP2) method to better understand the reactivity of azacyclopropenylidene with four-membered ring compound epoxypropane. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. It was found that for the first step of this reaction, azacyclopropenylidene can insert into epoxypropane at its C-O or C-C bond to form spiro intermediate IM. It is easier for the azacyclopropenylidene to insert into the C-O bond than the C-C bond. Through the ring-opened step at the C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at the C-N bond of azacyclopropenylidene fragment, IM can convert to product P2, which is named as pathway (2). From the thermodynamics viewpoint, the P2 characterized by an allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.

Grinding robot system for car brazing bead

  • Kang, Hyo-Sik;Lee, Woo-Ho;Park, Jong-Oh;Lee, Gwang-Se;Shin, Hyoun-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.160-163
    • /
    • 1993
  • In this paper, design of an automatic grinding robot system for car brazing bead is introduced. Car roof and side panels are joined using brazing, and then the brazing bead is processed so that the bead is invisible after painting. Up to now the grinding process is accomplished manually. The difficulties in automation of the grinding process are induced by variation of position and shape of the bead and non-uniformity of the grinding area due to surface deformation. For each car, the grinding area including the brazing bead is sensed and then modeled using a 2-D optical sensor system. Using these model data, the position and the direction of discrete points on the car, body surface are obtained to produce grinding path for a 6 degrees of freedom grinding robot. During the process, it is necessary to sense the reaction forces continuously to prepare for the unexpected circumstances. In addition, to meet the line cycle time it is necessary to reduce the required time in sensing, signal processing, modeling, path planning and data transfer by utilizing real-time communication of the information. The key technique in the communication and integration of the complex information is obtaining in-field reliability. This automatic grinding robot system may be regarded as a jump in the intelligent robot processing technique.

  • PDF

A FEASIBILITY STUDY ON THE APPLICATION OF THE KNITTED GLASS FABRIC COMPOSITES TO FIXED PROSTHODONTIC RESTORATION IN DENTISTRY (Knitted Glass Fabric 강화 복합레진을 사용한 고정성 치과보철물에 대한 적용성 평가)

  • Chung Jae-Min;Lee Kyu-Bok;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.429-440
    • /
    • 2002
  • Current dental restorations present a relatively weak resistance to fracture. Owing to their unique mechanical properties, fibre-reinforced polymers are now being considered. Unidirectional or woven continuous fibres, made of glass, polyethylene, carbon or Kevlar, have been evaluated. This study focused on the use of glass fibre knitted fabrics to reinforce acrylate resins, in order to investigate the possibility to construct single crowns as well as three unit bridges. Some points affecting the final composite system were tested ; 1) static strength, with focus on the stress transfer under a occlusal contact point ; 2) modelling of a three nit bridge ; 3) fatigue strength as a posterior three unit bridge material. The study demonstrated that knitted fabric reinforcements are showing an interesting compromise between stiffness, static strength for single crown. For three unit bridge applications in the posterior arch, however knitted glass fabric reinforcements were not strong enough in fatigue An additional reinforcement in the posterior arch fixed partial denture design was recommended.

Real Time Estimation of Temperature Distribution of a Ball Screw System Using Modal Analysis and Observer (모드해석과 관측기에 의한 볼스크류 온도분포의 실시간 예측)

  • An, Jung-Yong;Kim, Tae-Hun;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.145-152
    • /
    • 2001
  • Thermal deformation of a machine tool structure can be evaluated from the analysis of the whole temperature field. However, it is extremely inefficient and impossible to know the whole temperature field by measuring temperatures at every point. So, the temperature estimator is required, which can predict the whole temperature field from the temperatures of just a few points. In this paper, a 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. And then the state observer is designed to estimate the intensity of heat source and the whole temperature field in real time. The reliability of the estimator is verified by making comparison between solutions obtained from the proposed method and the exact solutions of examples. The proposed method is applied to the estimation of temperature distribution in a ball screw system.

Numerical investigation on the bifurcation of natural convection in a horizontal concentric annulus (수평동심환상공간내 자연대류의 다중해에 관한 수치적 연구)

  • Jeong, Jae-Dong;Kim, Chan-Jung;Lee, Jun-Sik;Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.252-263
    • /
    • 1997
  • Steady-state two-dimensional natural convective heat transfer in horizontal cylindrical annuli was studied by solving the governing equations based on the primitive variables. Emphasis was put on the occurrence of the multiple solutions at a given set of parameter values, and on the determination of the bifurcation points at which those multiple solutions begin to branch out. The multicellular flow pattern from the results of melting process in an isothermally heated horizontal cylinder for high Rayleigh numbers, was used as initial guesses for the field variables. This was succeeded in new bifurcation point to tetracellular solutions for an identical set of parameter variables of previous works. The close examination of flow pattern transition around bifurcation point was also conducted. It was found that the mechanisms of flow transition are different depending on the critical Rayleigh number of bifurcation point.

New Suction Mechanism Using Permanent Magnet (영구자석을 이용한 새로운 Suction Mechanism)

  • Seo, Sung-Keun;Lee, Seung-Hee;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.962-966
    • /
    • 2004
  • Suction transfer system with air suctioning is widely used and continuously developed in production automation. Air suctioning has some drawbacks in use. To generate vacuum in the suction cup with air suctioning, complex of mechanical component like as air compressor, air tube, air value is need, and it needs continuous air supply. And if the failure of the suction in a cup in the multi-suction cup system which is generally used occurs then the suctions of all of the cup will be fail. To overcome these drawbacks, new suction mechanism which uses permanent magnet for the movement of the suction cup is proposed. The proposed mechanism activates each suction cup separately, so the air leakage of a cup is not critical. The proposed suction system wasdesigned and fabricated in real world. With some experiments, the usability and performance of the suction mechanism was proved. The strong points of the proposed suction mechanism are simple structure, high energy efficiency, and discrete energy supply.

  • PDF

Analysis of Sources and Contribution for the Radiated Noise of Drum-type Washing Machine (드럼세탁기 방사소음의 소스 및 기여도 분석)

  • Kim, Ji Man;Jung, Byung Kyoo;Heo, So Jung;Ahn, Se Jin;Jeong, Weui Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.628-635
    • /
    • 2014
  • The procedure to estimate the sources of noise and vibrations in a typical drum-type washing machine was presented. The sources should be identified to predict the radiated noise with computational model of structure. Source identification techniques based on singular decomposition were implemented using the measured signals of accelerometers and microphones. The finite element analysis and indirect boundary element analysis were implemented to predict the structural vibrations and the acoustic pressures at the field points. The predicted results by only structural sources were compared with those by both structural and acoustical sources. It was verified that not only the structural-borne source but also air-borne source should be considered to predict the radiated noise with better accuracy. The contribution analysis with respect to the transfer path was also preformed.

Direct forcing/fictitious domain-Level set method for two-phase flow-structure interaction (이상 유동에서의 유체-구조 연성해석을 위한 Direct Forcing/Ficititious Domain-Level Set Method)

  • Jeon, Chung-Ho;Yoon, Hyun-Sik;Jung, Jae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.36-41
    • /
    • 2011
  • In the present paper, a direct forcing/fictitious domain (DF/FD) level set method is proposed to simulate the FSI (fluid-solid interaction) in two-phase flow. The main idea is to combine the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. The DF/FD method is a non-Lagrange-multiplier version of a distributed Lagrange multiplier/fictitious domain (DLM/FD) method. This method does not sacrifice the accuracy and robustness by employing a discrete ${\delta}$ (Dirac delta) function to transfer quantities between the Eulerian nodes and Lagrangian points explicitly as the immersed boundary method. The advantages of this approach are the simple concept, easy implementation, and utilization of the original governing equation without modification. Simulations of various water-entry problems have been conducted to validate the capability and accuracy of the present method in solving the FSI in two-phase flow. Consequently, the present results are found to be in good agreement with those of previous studies.

Characteristic Analysis of Hot Spot Temperature according to Cooling Performance Variation of Natural Ester Transformer (식물성 절연유 변압기의 냉각특성 변화에 따른 최고점온도 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • Natural ester has a higher biodegradability, flash and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester also has a higher pour point, viscosity, and water content. These characteristics hamper circulation and the electrical properties of oil-filled transformer. Thus, this paper applied electromagnetic-thermal-flow coupled analysis method to predict temperature distribution inside 154kV single phase power transformer using natural ester. It modeled in the actual appearance for the tank and winding of the power transformer to improve the accuracy of analysis and applied heat flow analysis that considered hydromechanics and heat transfer at the same time. It calculated the power loss, the main cause of temperature rise, from winding and core with electromagnetic analysis then used for the heat source for the heat flow analysis. It then compared the reasonability of result of measurement analysis based on the result acquired from temperature rise test using FBG sensor on the power transformer.