• 제목/요약/키워드: Transfer Girder

검색결과 66건 처리시간 0.02초

전이층을 가진 초고층건물의 기둥축소량 예측 및 현장계측 (Column Shortening prediction and Field measurement of Tall building with Transfer floor)

  • 송화철;조용수;정성진;윤광섭;이우호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.175-181
    • /
    • 2006
  • The prediction of time-dependent column shortening is essential for tall buildings considering both strength and serviceability aspects. The Column shortening of tall buildings with transfer floor should be calculated considering the long-term deflection of transfer girder. In this study, both the column shortening and the deflection of transfer girder of 45-story tall concrete building are predicted. The column shortening considering deflection of transfer girder are compared with the actual column shortening by field measurement.

  • PDF

주상복합구조의 전이보 상세설계기법 연구 (A Study for Transfer Girder Details of the Upper-Wall and Lower-Frame Structures)

  • 이한선;김상연;고동우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.529-534
    • /
    • 2000
  • Hybrid building structure, which comprise both the residential and commercial spaces in a building, are composed of upper shear-walls and lower frames. In these hybrid structures, the structural analysis and design of transfer systems which link upper-wall and lower-frame are crucial. The available structural design methods for the transfer girder are performed by taking a prototype structure, and the details of transfer girder based on these design methods are presented and compared with regard to the dimensions and amount of reinforcements.

  • PDF

상부 전단벽 하부 프레임 구조를 갖는 시스템의 수직하중에 대한 거동 (Behavior of the Wall System with Transfer Girder and Columns.)

  • 홍성걸;문종우;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.456-461
    • /
    • 1998
  • This paper presents the results from a combination of strut-and-tie model and analytical study that investigated the ultimate strength of wall system with frame supports. Strut-and-tie models show reasonable force flows and upper bound solution is compared to the results from FEM analysis. The results shows that two main parameters - transfer girder depth and column width - yield good estimation of the ultimate strength of the system. Vertical and horizontal reinforcements of the transfer girder add few strength to the whole system. The proposed design strength formula shows good agreement with the results from FEM analysis.

  • PDF

After-fracture behaviour of steel-concrete composite twin I-girder bridges: An experimental study

  • Lin, Weiwei
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.139-149
    • /
    • 2022
  • To simplify the design and reduce the construction cost of traditional multi-girder structural systems, twin I-girder structures are widely used in many countries in recent years. Due to the concern on post-fracture redundancy, however, twin girder bridges are currently classified as fracture critical structures in AASHTO specifications for highway bridges. To investigate the after-fracture behavior of such structures, a composite steel and concrete twin girder specimen was built and an artificial fracture through the web and the bottom flange was created on one main girder. The static loading test was performed to investigate its mechanical performance after a severe fracture occurred on the main girder. Applied load and vertical displacement curves, and the applied load versus strain relationships at key sections were measured. To investigate the load distribution and transfer capacities between two steel girders, the normal strain development on crossbeams was also measured during the loading test. In addition, both shear and normal strains of studs were also measured in the loading test to explore the behavior of shear connectors in such bridges. The functions and structural performance of structural members and possible load transfer paths after main girder fractures in such bridges were also discussed. The test results indicate in this study that a typical twin I-girder can resist a general fracture on one of its two main girders. The presented results can provide references for post-fracture performance and optimization for the design of twin I-girder bridges and similar structures.

선로이송 가설공법을 적용한 철도판형교 유도상화(III) (Steel Plate Girder Railway Bridge Ballast System using Rail Transfer Method(III))

  • 민지홍;장준현;우용근;김진용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1569-1576
    • /
    • 2011
  • To install heavy structures in the railway bridges, crane methods or launching methods using temporary structure have been applied. These methods are uneconomical because working yard is required, temporary cut of rail system, etc. In this study, various construction methods has been developed which are suitable to the filed conditions. In the case of simple span structure like plate girder bridges, the girder is loaded to troy system at the working yard and then transferred to the working place. To lift and lower the girder system, a new transfer system was developed. Different methods each for simple span bridge girder and long span girder were developed and detailed work procedures were proposed. Using these methods, the heavy structures can be installed with simple and safe work procedures and the construction cost and duration can be reduced.

  • PDF

단순 모델을 사용한 추상복합 건물의 효율적인 전이 시스템에 관한 연구 (Evaluation of an Effective Load Transfer System Applied to a Simple Model of a Wall Frame Structural System)

  • 정영일;윤석한;홍원기;김희철
    • 한국지진공학회논문집
    • /
    • 제6권3호
    • /
    • pp.23-29
    • /
    • 2002
  • 상부 벽식, 하부 골조로 이루어진 주상복합 건물은 주어진 대지 내에 여러 기능을 수용하기 위한 건물의 구조로서 대도시에서는 광범위하게 사용되고 있다. 그러나 이러한 전이보 시스템은 구조시스템의 수직적 불연속성으로 인하여 많은 문제점을 가지고 있다. 본 연구에서는 현재 일반적으로 주상복합건물에 사용중인 춤이 깊은 전이보를 가진 구조시스템을 조사하고 아치 시스템으로 대체하기 위하여 기존의 전이보를 사용하였을 경우 발생하는 아치거동의 형태를 규정하고 이를 아치의 형태로 나타내어 전이보 시스템을 대체하였다. 전이보 시스템을 대체한 보다 효율적인 아치 시스템에 대한 여러 가지 고찰을 통해 아치 시스템의 적용성 여부를 판단하고, 이 시스템과 기존의 전이보 시스템을 중력방향 하중과 횡 방향 하중에 대하여 비교하였다. 전이보 시스템과 아치 시스템을 중력방향 하중과 횡 방향 하중에 대해 비교한 결과, 전이보 시스템이 가지고 있는 구조적인 문제점을 많이 감소시킬 수 있었다. 전이보 시스템을 대체할 아치 시스템은 아치 작용으로 인해 발생하는 전이보의 전단 거동에 대한 불확실성, 전이보 자체의 큰 강성으로 인하여 기둥 부분에 발생하는 추가 모멘트 벽 하단부에 발생하는 전단 응력 집중 현상 및 벽 하부 중앙과 전이보 중앙부의 비효율성 등과 같은 문제점을 감소시킬 수 있는 효율적인 시스템으로 판단된다.

Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges

  • Hossain, Tanvir;Okeil, Ayman M.
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.109-125
    • /
    • 2014
  • The force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges is investigated in this paper using a three-dimensional detailed finite element model. Positive moment reinforcement in the form of hairpin bars as recommended by the National Cooperative Highway Research Program Report No 519 is incorporated in the model. The cold construction joint that develops at the interface between girder ends and continuity diaphragms is also simulated via contact elements. The model is then subjected to the positive moment and corresponding shear forces that would develop over the service life of the bridge. The stress distribution in the continuity diaphragm and the axial force distribution in the hairpin bars are presented. It was found that due to the asymmetric configuration of the hairpin bars, asymmetric stress distribution develops at the continuity diaphragm, which can be exacerbated by other asymmetric factors such as skewed bridge configurations. It was also observed that when the joint is subjected to a positive moment, the tensile force is transferred from the girder end to the continuity diaphragm only through the hairpin bars due to the lack of contact between the both members at the construction joint. As a result, the stress distribution at girder ends was found to be concentrated around the hairpin bars influence area, rather than be resisted by the entire girder composite section. Finally, the results are used to develop an approach for estimating the cracking moment capacity at girder ends based on a proposed effective moment of inertia.

전달행렬법에 의한 경사 격자교의 해석에 관한 연구 (Study on Analysis of Skew Grillage Girder Bridges by Transfer Matrix Method)

  • 김용희;이윤영;김광호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.159-170
    • /
    • 2005
  • 격자구조는 병렬하는 주거더에 횡거더로 접합된 구조를 말하며 집중하중이 재하될 때 하중이 주거더만 부담하지 않고 횡거더를 통하여 다른 주거더로 하중이 일부를 부담하게 된다. 격자형의 교량은 과다한 집중하중을 분산시켜 내하력이 높은 특성을 갖고 있으며 사용재료를 절약할 수 있어 경제적이다. 본 연구에서는 해석절차가 간단하고 이해가 쉬운 전달행렬법을 이용하여 격자교의 프로그램을 작성하여 Leonhardt, Szabo, FEM, 양창현 및 정진환의 해석결과와 비교하였다. 또한, 경사각을 갖는 직선격자교와 곡선격자교의 특성을 분석하였고, 경사각과 휨강도/비틀림강도의 비에 따른 직선격자교와 곡선격자교의 단면력을 분석하였다.

전이보 매스콘크리트의 수화열 저감에 관한 Mock-up 실험 (Mock-up Test on the Reduction of Hydration Heat of Mass Concrete for Transfer Girder)

  • 윤섭;황인성;백병훈;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.707-710
    • /
    • 2004
  • This paper reported the results of mock-up test on mass concrete for transfer girder using setting time difference of super retarding agent(SRA). According to test results, two mock-up structures were made. Plain concrete without placing layer reached maximum temperature after 24hours since placement and caused surface hydration cracks at top section. However, concrete with placing layer reached maximum temperature after 72hours and surface temperature was higher than center temperature, which did not cause surface crack. After form removing, no crack was observed at side surface of plain concrete, while concrete using SRA at mid section had surface scaling and settling crack. According to coring results, concrete with placing layer had a penetration crack from top section to bottom section. Therefore, the setting time difference method to reduce hydration heat will have difficulty in applying the mass concrete for transfer girder.

  • PDF

고강도 매스 콘크리트-보의 수화열 및 강도특성 (Hydration Heat and Strength Properties of Mass Concrete Transfer Girder)

  • 강연우;김규용;김순묵;김수봉;한장훈;정재영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.28-29
    • /
    • 2013
  • When concrete was hardened, it should had considered a crack to make internal stress by hydration heat. For control of crack, admixture was use to change cement because hydration heat was effect to cement. High strength mass concrete had much hydration heat with high volume of cement. It was necessary to reduce hydration heat in construction method. In this study, it evaluates hydration heat, compressive strength of transfer concrete girder regard to field construction type such as separation, whole etc. Also, we test compressive strength of concrete with core and mold specimen.

  • PDF