• Title/Summary/Keyword: Transfer Function model

Search Result 935, Processing Time 0.024 seconds

Modeling of the Head-Related Transfer Functions with Optimum Reflection Wave Transfer Characteristics in Free-Field Listening over Headphones (헤드폰을 이용한 자유 음장 청취에서의 최적 반사 음파 전달 특성을 갖는 머리 전달 함수 모델링)

  • Yim, Jeong-Bin;Kim, Chun-Duck;Kang, Seong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.16-25
    • /
    • 1997
  • A new method to model the HRTF's(Head-Related Transfer Function), which could give improvement of the sound localization accuracy using the spatial effects by the reflected sound wave transfer characteristics, is proposed. When using the HRTF model having reflected sound wave transfer characteristics, the accuracy of sound localization was quite improved up to about 23%, compared with using the direct wave transfer characteristics only. Furthermore, it is verified that the spatial impression could be a factor to enhance the ability of sound localization.

  • PDF

Effects of Tropospheric Delay Models for GPS Time Transfer (GPS 시각 전송에서의 대류층 지연 모델 영향 비교)

  • Yu, Donghui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.139-141
    • /
    • 2014
  • This paper shows effects of tropospheric delay models among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link uses the software and send the CGGTTS results periodically. Though Saastamoinen model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models implementing Saastamoinen model and Niell mapping function for the time offset.

  • PDF

Analysis of the Effects of Scaling Factors of Fuzzy Controller (퍼지 제어기의 Scaling Factor의 영향 분석)

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.195-202
    • /
    • 1995
  • In this paper, we analyze the effects of scaling factors on the performance of a fuzzy controller. The quantitative relation between input and output variables of a fuzzy controller is obtained by using a quasi-linear fuzzy model. And an approximate transfer function of a fuzzy controller is derived from the comparison of fuzzy controller with the conventional PID controller. Then we analyze the effects of scaling factor using this approximate transfer function and root locus method.

  • PDF

Identification of Track Irregularity using Wavelet Transfer Function (웨이브렛 전달함수를 이용한 궤도틀림 식별)

  • Shin, Soo-Bong;Lee, Hyeung-Jin;Kim, Man-Cheol;Yoon, Seok-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • This paper presents a methodology for identifying track irregularity using a wavelet transfer function. An equivalent wavelet SISO (single-input single-output) transfer function is defined by the measured track geometry and the acceleration data measured at a bogie of a train. All the measured data with various sampling frequencies were rearranged according to the constant 25cm reference recording distance of the track recording vehicle used in the field. Before applying the wavelet transform, measured data were regressed by eliminating those out of the range. The inverse wavelet transfer function is also formulated to estimate track geometry. The closeness of the estimated track geometry to the actual one is evaluated by the coherence function and also by FRF (frequency response function). A track irregularity index is defined by comparing the variance of the estimation error from the intact condition and that from the current condition. A simulation study has been carried out to examine the proposed algorithm.

Forecasting drug expenditure with transfer function model (전이함수모형을 이용한 약품비 지출의 예측)

  • Park, MiHai;Lim, Minseong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.303-313
    • /
    • 2018
  • This study considers time series models to forecast drug expenditures in national health insurance. We adopt autoregressive error model (ARE) and transfer function model (TFM) with segmented level and trends (before and after 2012) in order to reflect drug price reduction in 2012. The ARE has only a segmented deterministic term to increase the forecasting performance, while the TFM explains a causality mechanism of drug expenditure with closely related exogenous variables. The mechanism is developed by cross-correlations of drug expenditures and exogenous variables. In both models, the level change appears significant and the number of drug users and ratio of elderly patients variables are significant in the TFM. The ARE tends to produce relatively low forecasts that have been influenced by a drug price reduction; however, the TFM does relatively high forecasts that have appropriately reflected the effects of exogenous variables. The ARIMA model without the exogenous variables produce the highest forecasts.

Cluster Analysis and Meteor-Statistical Model Test to Develop a Daily Forecasting Model for Jejudo Wind Power Generation (제주도 일단위 풍력발전예보 모형개발을 위한 군집분석 및 기상통계모형 실험)

  • Kim, Hyun-Goo;Lee, Yung-Seop;Jang, Moon-Seok
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1229-1235
    • /
    • 2010
  • Three meteor-statistical forecasting models - the transfer function model, the time-series autoregressive model and the neural networks model - were tested to develop a daily forecasting model for Jejudo, where the need and demand for wind power forecasting has increased. All the meteorological observation sites in Jejudo have been classified into 6 groups using a cluster analysis. Four pairs of observation sites among them, all having strong wind speed correlation within the same meteorological group, were chosen for a model test. In the development of the wind speed forecasting model for Jejudo, it was confirmed that not only the use a wind dataset at the objective site itself, but the introduction of another wind dataset at the nearest site having a strong wind speed correlation within the same group, would enhance the goodness to fit of the forecasting. A transfer function model and a neural network model were also confirmed to offer reliable predictions, with the similar goodness to fit level.

A structural model updating method using incomplete power spectral density function and modal data

  • Esfandiari, Akbar;Chaei, Maryam Ghareh;Rofooei, Fayaz R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.39-51
    • /
    • 2018
  • In this study, a frequency domain model updating method is presented using power spectral density (PSD) data. It uses the sensitivity of PSD function with respect to the unknown structural parameters through a decomposed form of transfer function. The stiffness parameters are captured with high accuracy through solving the sensitivity equations utilizing the least square approach. Using numerically noise polluted data, the model updating results of a truss model prove robustness of the method against measurement and mass modelling errors. Results prove the capabilities of the method for parameter estimation using highly noise polluted data of low ranges of excitation frequency.

Measurement of Dynamic Properties of Concrete Structures Using Beam Transfer Function Methods (보 전달함수법을 이용한 콘크리트 구조물의 동특성 측정)

  • Kim, Seung-Joon;Yoo, Seung-Yup;Jeong, Yeong;Jun, Jin-Yong;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.950-953
    • /
    • 2006
  • The floor impact noise of concrete structures in apartments buildings is affected from the flexural wave propagation characteristics. Accordingly, the measurement of wave propagation characteristics is required for suggestion of efficient method to reduce the impact noise. The purpose of this article is to propose an experimental technique to measure dynamic properties of concrete structures. The method was proposed using the flexural wave propagation characteristics. Wave speeds, bending stiffness and their loss factors are estimated from which the vibration dissipation capabilities are investigated. Several different concrete beam structures were custom-built for measurement. The damping treatments using viscoelastic materials for reducing noise generation are also tested. The beam transfer function of the damped beam is predicted using the compressional damping model from which the mechanism of the vibration energy dissipation is investigated.

  • PDF

Combustion Stability Analysis using Feedback Transfer Function (피드백 전달함수를 이용한 연소 안정성 해석)

  • Kim, Jina;Yoon, Myunggon;Kim, Daesik
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper we propose a new approach for an analysis and a prediction of combustion instability of lean premixed gas turbines. Our approach is based on the Nyquist stability criterion in control theory and a transfer function representation of a one-dimensional (1D) thermoacoustic system. A key advantage of the proposed approach is that one can systematically characterize the effects of various parameters of a combustor system on combustion instability. Our analysis method was applied to a real combustion system and the analysis results were consistent with experimental data.

A Study on Unsteady Responses of Flames - Calculation of Flame Transfer Function in a Subscale Combustor (화염의 비정상 응답 특성 연구-화염 전달 함수 산출)

  • Sohn, Chae Hoon;Guillaume, Jourdain;Kim, Young Jun
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.107-108
    • /
    • 2015
  • The acoustic optimization of a swirl coaxial jet injector mounted upstream a combustion chamber is investigated to tackle combustion instabilities. The least damped modes are extracted with the help of the dynamic mode decomposition (DMD). The sensitivity of the heat release perturbation to the velocity perturbation for the second longitudinal mode is investigated by combining the Crocco's equation and the inhomogeneous wave equation and computing the flame transfer function (FTF). DMD and FTF results agree in terms of the optimized injector length.

  • PDF