• Title/Summary/Keyword: Transfer Curves

Search Result 290, Processing Time 0.026 seconds

Computational Study of the Mixed Cooling Effects on the In-Vessel Retention of a Molten Pool in a Nuclear Reactor

  • Kim, Byung-Seok;Ahn, Kwang-Il;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.990-1001
    • /
    • 2004
  • The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a Pressurized Water Reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure.

Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model (확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링)

  • Cho, Ha-Na;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2012
  • Here is implemented MATLAB program to analyze the characteristic curves of cyclic voltammetry which involves the multi-electron electrode reaction considered as key processes in electrochemical systems. For the electrochemical mass-transfer system, Fick's concentration equation subject to semi-infinite diffusion model for the boundary condition was discretized and solved by the explicit finite difference method. The resulting concentration values were converted into currents at each node by using Butler-Volmer equation. Based on the good agreement between the present numerical solution and the existing experimental results, effects of kinetic constants and CV scan rates on the reaction mechanism in multi-electron transfer processes were investigated effectively.

Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites : the Effects of Covalent Grafting (탄소나노튜브/폴리에스터 복합재의 역학적 거동과 하중전달에 관한 분자 동역학 전산모사 : 그래프팅 가공의 영향)

  • Jin, Juho;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • Molecular dynamics simulation and the Mori-Tanaka micromechanics study are performed to investigate the effect of the covalent grafting between CNT and polyester on the mechanical behavior and load transfer of nanocomposites. The transversely isotropic stress-strain curves are determined through the tension and shear simulations according to the covalent grafting. Also, isotropic properties of randomly dispersed nanocomposites are obtained by orientation averaging the transversely isotropic stiffness matrix. By addressing the grafting, the transverse Young's modulus and shear moduli of the nanocomposites are improved, while the longitudinal Young's modulus decreases due to the degradation of the grafted CNT.

Use of water retention curves predicted from particle-size distribution data for simulation of transport of Benzo[a]pyrene in soil

  • Cho Young-A;Hwang Sang-Il;Jang Yong-Chul;Lee Dong-Soo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.216-219
    • /
    • 2006
  • Water retention curve (WRC), one of soil hydraulic properties, is often approximated by property-transfer models (PTMs). Using the PTMs, we can estimate the WRCs from other physical properties such as particle-size distribution (PSD). The objective of this work was to investigate the performance of two PTMs with different origins for numerical simulations on transport of Benzo[a]pyrene in a soil. To do this, we chose both PTMs with different origins, i.e., (1) the lognormal distribution model (L anti NL models), and (2) the modified $Kov\'{a}cs$ model (MK model). The MK model showed tile worse performance in estimation of the WRCs. When transport of B[a]P was simulated, the MK model predicted to move farther than the L and NL models did, indicating that transport of B[a]P in a soil can be greatly influenced by the choice of PTMs.

  • PDF

Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal (박판 딤플 성형을 위한 유한요소해석 및 성형성 평가)

  • Heo, Seong-Chan;Seo, Young-Ho;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

An Experiment on Thermosyphon Boiling in Uniformly Heated Vertical Tube and Asymmetrically Heated Vertical Channel

  • Kwak, Ho-Young;Jeon, Jin-Seok;Na, Jung-Hee;Park, Hong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.98-107
    • /
    • 2001
  • Continuing efforts to achieve increased circuit performance in electronic package have resulted in higher power density at chip and module level. As a result, the thermal management of electronic package has been important in maintaining or improving the reliability of the component. An experimental investigation of thermosyphonic boiling in vertical tube and channel made by two parallel rectangular plates was carried out in this study for possible application of the direct immersion cooling. Fluorinert FC-72 as a working fluid was used in this experiment. Asymmetric heated channel of open periphery with gap size of 1, 2, 4 and 26mm and uniformly heated vertical tubes with diameter of 9, 15 and 20mm were boiled at saturated condition. The boiling curves from tested surfaces exhibited the boiling hysteresis. It was also found that the gap size is not a significant parameter for the thermosyphonic boiling heat transfer with this Fluorinert. Rather pool boiling characteristics appeared for larger gap size and tube diameter. The heat transfer coefficients measured were also compared with the calculation results by Chens correlation.

  • PDF

The effects of discharge gases in the voltage transfer curve of ac-PDP (ac-PDP의 전압전달특성에 미치는 방전가스의 영향)

  • Son, J.B.;Lee, S.H.;Kim, D.H.;Kim, Y.D.;Cho, J.S.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2233-2235
    • /
    • 1999
  • The ac plasma display panel(PDP) is a flat light-emitting gas discharge device. Discharge gases directly take effects to the discharge phenomena of ac PDP. Therefore it is necessary to understand the characteristics of the discharge gases. In this paper, we have studied the effects of discharge gases by voltage transfer curves which show the discharge characteristics of ac PDP and the change of the effective wall capacitance during a discharge which depends on lateral spreading of charge distribution and the strength of discharge. As gas pressure increases, memory margins increases. and the firing voltage of a mixed gas is lower than that of a single gas such as He gas. The minimum sustain voltage and the maximum sustain voltage or firing voltage increases with decrease in the frequency. The effective wall capacitance increases as the discharge strength that is, the gap voltage between discharge electrodes increases.

  • PDF

STUDY ON THE EFFECT OF THE SELF-ATTENUATION COEFFICIENT ON γ-RAY DETECTOR EFFICIENCY CALCULATED AT LOW AND HIGH ENERGY REGIONS

  • El-Khatib, Ahmed M.;Thabet, Abouzeid A.;Elzaher, Mohamed A.;Badawi, Mohamed S.;Salem, Bohaysa A.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • The present work used the efficiency transfer method used to calculate the full energy peak efficiency (FEPE) curves of the (2"*2" & 3"*3") NaI (Tl) detectors based on the effective solid angle subtended between the source and the detector. The study covered the effect of the self attenuation coefficient of the source matrix (with a radius greater than the detector's radius) on the detector efficiency. $^{152}$ An Eu aqueous radioactive source covering the energy range from 121.78 keV up to 1408.01 keV was used. In this study an empirical formula was deduced to calculate the difference between the measured and the calculated efficiencies [without self attenuation] at low and high energy regions. A proper balance between the measured and calculated efficiencies [with self attenuation] was achieved with discrepancies less than 3%, while reaching 39% for calculating values [without self attenuation] due to working with large sources, or for low photon energies.

High Temperature Deformation Behavior of $SiC_p/Al-Si$ Composites ($SiC_p/Al-Si$ 복합재료의 고온변형 특성)

  • 전정식;고병철;김명호;유연철
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.427-439
    • /
    • 1994
  • The high temperature deformation behavior of $SiC_p/Al-Si$ composites and Al-Si matrix was studied by hot torsion test in a range of temperature from $270^{\circ}C$ to $520^{\circ}C$ and at strain rate range of $1.2{\times}10_{-3}~2.16{\times}10_{-1}/sec$. The hot restoration mechanisms for both matrix and composites were found to be dynamic recrystallization(DRX) from the investigation of flow curves and microstructural evolutions. The Si precipitates and SiC particles promoted DRX, and the peak strain$({\varepsilon}_p)$ of the composites was smaller than that of the matrix. Flow stresses of $SiC_p/Al-Si$ composites were found to be generally higher than the matrix, but the difference was quite small at higher temperature due to the decrease of capability of load transfer by SiC particles. With increasing temperature, failure strain of matrix and composites are inclined to increase, the increasing value of failure strain for the $SiC_p/Al-Si$ composites was small compared to that of matrix. The stress dependence of both materials on strain rate() and temperature(T) was examined by hyperbolic sine law, $\.{\varepsilon}=A_1[sinh({\alpha}{\cdot}{\sigma})]_n$exp(-Q/RT)

  • PDF

Electrochemical Study of Functional Organic Monomolecular Film prepared by Langmuir-Blodgett Method (기능성 유기 LB단분자막의 전기화학적 연구)

  • 박수길;임기조;전일철;이주성
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.34-45
    • /
    • 1995
  • An amphiphilic nitroxide radical(2,2'6,6'-tetramethyl-4-octadecyioxy-1-piperidinyloxyl, TEMOPO) or mixture of TEMOPO and arachidic acid(Icosanoic acid, AA), was spread on water surface by the Langmuir-Blodgett(LB) method and surface pressure-area curve was measured. Such monolayer films of TEMOPO were transferred onto surfaces of photo transferable tin oxide electrodes(PTTO) by the LB method under various surface pressure with the transfer ratio of larger than 0.95 at the surface pressure higher than 15mN/m. The electrochemical effect of functional nitroxy radical monolayer onto semi-conductive electrode to electrolyte have been investigated by using LB method. Cyclic voltammetry technique was used for the electrochemical behavior measurement of TEMOPO monolayer onto the PTTO in 0.18 mo1/$dm^3$ $H_2SO_4$ solutions. The shape of voltammograms was found to change from one electrode to another. The amount of charge for the oxidation and the re-reduction of the cation to TEMOPO were evaluated from graphical integration. The amounts of charge were always smaller than those predicted from the $\pi$-$\sigma$ curves though the transfer ratio was unity. The poor reproducibility of the cyclic voltammograms was improved by the mixing with AA. Structure and arrangement of monomolecular layer on water surface and electrode were studied. Characteristics of monolayer film applied for the mediation reaction was also discussed by electrochemical method.

  • PDF