• Title/Summary/Keyword: Transductive Learning

Search Result 6, Processing Time 0.146 seconds

A Branch-and-Bound Algorithm for Finding an Optimal Solution of Transductive Support Vector Machines (Transductive SVM을 위한 분지-한계 알고리즘)

  • Park Chan-Kyoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.69-85
    • /
    • 2006
  • Transductive Support Vector Machine(TSVM) is one of semi-supervised learning algorithms which exploit the domain structure of the whole data by considering labeled and unlabeled data together. Although it was proposed several years ago, there has been no efficient algorithm which can handle problems with more than hundreds of training examples. In this paper, we propose an efficient branch-and-bound algorithm which can solve large-scale TSVM problems with thousands of training examples. The proposed algorithm uses two bounding techniques: min-cut bound and reduced SVM bound. The min-cut bound is derived from a capacitated graph whose cuts represent a lower bound to the optimal objective function value of the dual problem. The reduced SVM bound is obtained by constructing the SVM problem with only labeled data. Experimental results show that the accuracy rate of TSVM can be significantly improved by learning from the optimal solution of TSVM, rather than an approximated solution.

Implementing a Branch-and-bound Algorithm for Transductive Support Vector Machines

  • Park, Chan-Kyoo
    • Management Science and Financial Engineering
    • /
    • v.16 no.1
    • /
    • pp.81-117
    • /
    • 2010
  • Semi-supervised learning incorporates unlabeled examples, whose labels are unknown, as well as labeled examples into learning process. Although transductive support vector machine (TSVM), one of semi-supervised learning models, was proposed about a decade ago, its application to large-scaled data has still been limited due to its high computational complexity. Our previous research addressed this limitation by introducing a branch-and-bound algorithm for finding an optimal solution to TSVM. In this paper, we propose three new techniques to enhance the performance of the branch-and-bound algorithm. The first one tightens min-cut bound, one of two bounding strategies. Another technique exploits a graph-based approximation to a support vector machine problem to avoid the most time-consuming step. The last one tries to fix the labels of unlabeled examples whose labels can be obviously predicted based on labeled examples. Experimental results are presented which demonstrate that the proposed techniques can reduce drastically the number of subproblems and eventually computational time.

Semi-Supervised Learning Using Kernel Estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.629-636
    • /
    • 2007
  • A kernel type semi-supervised estimate is proposed. The proposed estimate is based on the penalized least squares loss and the principle of Gaussian Random Fields Model. As a result, we can estimate the label of new unlabeled data without re-computation of the algorithm that is different from the existing transductive semi-supervised learning. Also our estimate is viewed as a general form of Gaussian Random Fields Model. We give experimental evidence suggesting that our estimate is able to use unlabeled data effectively and yields good classification.

  • PDF

A transductive least squares support vector machine with the difference convex algorithm

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.455-464
    • /
    • 2014
  • Unlabeled examples are easier and less expensive to obtain than labeled examples. Semisupervised approaches are used to utilize such examples in an eort to boost the predictive performance. This paper proposes a novel semisupervised classication method named transductive least squares support vector machine (TLS-SVM), which is based on the least squares support vector machine. The proposed method utilizes the dierence convex algorithm to derive nonconvex minimization solutions for the TLS-SVM. A generalized cross validation method is also developed to choose the hyperparameters that aect the performance of the TLS-SVM. The experimental results conrm the successful performance of the proposed TLS-SVM.

Sentiment Classification for Korean Tweets via Semi-Supervised Learning (준지도 학습을 이용한 트윗 감정 분류)

  • Seo, Hyeong-Won;Noh, Kyung-Mok;Cheon, Min-A;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.123-125
    • /
    • 2012
  • 본 논문은 기계 학습을 이용한 감정 분류에 필요한 학습 말뭉치를 효율적으로 확장하는 방법에 대하여 기술한다. 학습 말뭉치는 일반적으로 그에 알맞은 레이블을 정해야 하는데, 그 양이 어마어마하기 때문에 이 과정을 일일이 사람이 할 수는 없다. 그에 대한 해결책으로써 이미 많은 준지도학습 방법이 연구되었고, 그것을 트윗이라는 짧은 문서를 감정 분류하는 것에 적용해도 감정 문서 분류기의 성능이 좋다는 결과를 확인하였다.

  • PDF