• Title/Summary/Keyword: Transcriptomes

Search Result 69, Processing Time 0.029 seconds

De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

  • Jo, Yeonhwa;Choi, Hoseong;Bae, Miah;Kim, Sang-Min;Kim, Sun-Lim;Lee, Bong Choon;Cho, Won Kyong;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.478-487
    • /
    • 2017
  • Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV), infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs) for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

Current status of peach genomics and transcriptomics research (복숭아 유전체 및 전사체 최근 연구 동향)

  • Cho, Kang Hee;Kwon, Jung Hyun;Kim, Se Hee;Jun, Ji Hae
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.312-325
    • /
    • 2015
  • In this review, we summarized the trends of genomics and transcriptomics research on peach, a model species of Rosaceae. Peach genome maps have been developed from various progeny groups with many next-generation sequencing (NGS) based single nucleotide polymorphism markers. Molecular markers of qualitative traits and quantitative trait loci (QTL) such as fruit characteristics, blooming date, and disease resistance have been analyzed. Among many characteristics, markers related to flesh softening and flesh adhesion are useful for marker assisted selection. Through comparative genomics, peach genome has been compared to the genome of Arabidopsis, Populus, Malus, and Fragaria species. Through transcriptomics and proteomics, fruit growth and development, and flavonoid synthesis, postharvest related transcriptomes and disease resistance related proteins have been reported. Recently, development of NGS based markers, construction of core collection of germplasm, and genotyping of various progenies have been preceded. In the near future, accurate QTL analysis and identification of useful genes are expected to establish a foundation for effective molecular breeding.

Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses

  • Park, Kyung-Do;Kim, Hyeongmin;Hwang, Jae Yeon;Lee, Chang-Kyu;Do, Kyoung-Tag;Kim, Heui-Soo;Yang, Young-Mok;Kwon, Young-Jun;Kim, Jaemin;Kim, Hyeon Jeong;Song, Ki-Duk;Oh, Jae-Don;Kim, Heebal;Cho, Byung-Wook;Cho, Seoae;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1345-1354
    • /
    • 2014
  • Copy number variations (CNVs), important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse.

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Comparison of Gene Expression in Larval Fat Body of Helicoverpa assulta in Different Temperature Conditions (온도변화에 따른 담배나방 유충 지방체의 유전자 발현 비교 분석)

  • Cha, Wook Hyun;Kim, Kwang Ho;Lee, Dae-Weon
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.165-175
    • /
    • 2018
  • Insects are known to live at wide range of temperature, but can not survive when they are exposed to over $40^{\circ}C$ or below supercooling point. The larvae of Helicoverpa assulta have been reared at high ($35^{\circ}C$), low (3 to $10^{\circ}C$), and room temperature ($25^{\circ}C$; control). To identify stress-related genes, the transcriptomes of fat body have been analyzed. Genes such as cuticular proteins, fatty acyl ${\Delta}9$ desaturase and glycerol 3 phosphate dehydrogenase were up-regulated whereas chitin synthase, catalase, and UDP-glycosyltransferase were down-regulated at low temperature. Superoxide dismutase, metallothionein 2, phosphoenolpyruvate carboxykinase and trehalose transporter have been up-regulated at high temperature. In addition, expressions of heat shock protein and glutathione peroxidase were increased at high temperature, but decreased at low temperature. These temperature-specific expressed genes can be available as markers for climate change of insect pests.

Dynamic Transcriptome, DNA Methylome, and DNA Hydroxymethylome Networks During T-Cell Lineage Commitment

  • Yoon, Byoung-Ha;Kim, Mirang;Kim, Min-Hyeok;Kim, Hee-Jin;Kim, Jeong-Hwan;Kim, Jong Hwan;Kim, Jina;Kim, Yong Sung;Lee, Daeyoup;Kang, Suk-Jo;Kim, Seon-Young
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.953-963
    • /
    • 2018
  • The stepwise development of T cells from a multipotent precursor is guided by diverse mechanisms, including interactions among lineage-specific transcription factors (TFs) and epigenetic changes, such as DNA methylation and hydroxymethylation, which play crucial roles in mammalian development and lineage commitment. To elucidate the transcriptional networks and epigenetic mechanisms underlying T-cell lineage commitment, we investigated genome-wide changes in gene expression, DNA methylation and hydroxymethylation among populations representing five successive stages of T-cell development (DN3, DN4, DP, $CD4^+$, and $CD8^+$) by performing RNA-seq, MBD-seq and hMeDIP-seq, respectively. The most significant changes in the transcriptomes and epigenomes occurred during the DN4 to DP transition. During the DP stage, many genes involved in chromatin modification were up-regulated and exhibited dramatic changes in DNA hydroxymethylation. We also observed 436 alternative splicing events, and approximately 57% (252) of these events occurred during the DP stage. Many stage-specific, differentially methylated regions were observed near the stage-specific, differentially expressed genes. The dynamic changes in DNA methylation and hydroxymethylation were associated with the recruitment of stage-specific TFs. We elucidated interactive networks comprising TFs, chromatin modifiers, and DNA methylation and hope that this study provides a framework for the understanding of the molecular networks underlying T-cell lineage commitment.

Miscanthus EST-originated Transcription Factor WRKY Expression in Response to Low Temperature in Warm-season Turfgrasses (억새 EST 정보 유래 전사요소 WRKY의 난지형 잔디의 저온 발현 반응성)

  • Chung, Sung Jin;Choi, Young In;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.368-375
    • /
    • 2013
  • Whole genome transcriptomes from Miscanthus species were sequenced and analyzed, which provided 50 different types of transcription factor (TF) involving various developmental processes or environmental stresses. Among the explored TF, WRKY gene family was the major type and one of the WRKY genes, MSIR7180_WRKY4, induced under low temperature environment was selected to investigate how the Miscanthus-originated MSIR7180_WRKY4 TF responds when exposed to low temperature in four warm-season turfgrasses (Z. matrella 'Semil', bermudagrass, St. Augustinegrass, and seashore paspalum). The MSIR7180_WRKY4 was expressed higher during low temperature period in Bermudagrass, but the expression was enhanced in St. Augustinegrass. In contrast, the gene in 'Semil' cultivar was barely expressed and relatively less expressed, but repressed gradually in seashore paspalum, which seems to allow two turfgrasses stay-green longer in the fall season. The results indicate that bermudagrass and St. Augustinegrass adapt to low temperature quickly, but relative tolerance to low or cold temperature at the molecular level needs to be further investigated at different physiological stages and the corresponding genes systematically.

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.

Marine Metatranscriptome Profiling in the Sea Adjacent to Jeju Island, Korea, by RNA-sequencing (RNA-sequencing을 이용한 제주도 인접 바다의 메타전사체 프로파일링)

  • Hwang, Jinik;Kang, Mingyeong;Kim, Kang Eun;Jung, Seung Won;Lee, Taek-Kyun
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.625-629
    • /
    • 2020
  • The Ocean is a rich source of diverse living organisms include viruses. In this study, we examined the microbial communities in the sea adjacent to Jeju Island in two seasons by metatranscriptomics. We collected and extracted total RNA, and, using the next-generation sequencing HiSeq 2000 and de novo transcriptome assembly, we identified 652,984 and 163,759 transcripts from the March and December samples, respectively. The most abundant organisms in March were bacteria, while eukaryotes were dominant in the December sample. The bacterial communities differed between the two samples, suggesting seasonal change. To identify the viruses, we searched the transcripts against a viral reference database using MegaBLAST with the most identified being bacteriophages infecting the marine bacteria. However, we also revealed an abundance of transcripts associated with diverse herpesviruses in the two transcriptomes, indicating the presence or possible threat of infection of fish in the sea around Jeju Island. This data is valuable for the study of marine microbial communities and for identifying possible viral pathogens.

Preliminary study on the effect of inflamed TMJ synovial fluid on the intracellular calcium concentration and differential expression of iNOS and COX-2 in human immortalized chondrocyte C28/I2

  • Choi, Eun-Ah;Lee, Dong-Geun;Chae, Chang-Hoon;Chang, Young-Il;Park, Young-Ju;Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • Objective. The objective of this study was to examine the hypothesis that inflammatory synovial fluid from TMJ internal derangement initiates a transient increase in intracellular calcium concentration ([$Ca^{2+}$]i) in chondrocytes and the induced Ca2+ signaling affects iNOS/COX-2 gene expression patterns following exposure to inflamed synovial fluid. Materials and Methods. Two female adult patients with symptoms of TMD who agreed to participate in the study were selected for this study. Immortalized human juvenile costal chondrocyte C-28/I2 was grown to 80% confluency and synovial fluids from two patients were added respectively to culture media for 24 hours at the concentration of 100ng/10ml. Confocal laser scanning microscope (CLSM) was used to examine changes of intracellular calcium concentration ([$Ca^{2+}$]i). RT-PCR was performed to identify the expression profile of IL-1${\alpha}$, iNOS, COX-2. Results. Increased [$Ca^{2+}$]i was observed in chondrocytes subjected to inflamed synovial fluid compared to control cultures and in respective cultures exposed to inflamed synovial fluids from each patient, IL-1${\beta}$, COX-2 mRNA were detected. However, in neither case iNOS mRNA was expressed. IL-1${\alpha}$, COX-2, and iNOS mRNA were expressed in control culture. Conclusion. Our results show that immortalized chondrocytes cultured with inflamed synovial fluids from patients diagnosed as disc displacement without reduction and limitation in mouth opening showed increased calcium concentration and expression of COX-2 while inhibiting the production of iNOS, which in turn could adversely affect the chondrocytes in at least short term by hindering physiologic role of NO against inflammatory cascades. These findings suggest that inflamed synovial fluid may differentially regulate the transcriptomes of relevant inflammatory mediators, especially iNOS/COX-2 axis in chondrocytes through adjusting calcium transients.