• Title/Summary/Keyword: Transcriptome Sequencing

Search Result 175, Processing Time 0.033 seconds

Current status of peach genomics and transcriptomics research (복숭아 유전체 및 전사체 최근 연구 동향)

  • Cho, Kang Hee;Kwon, Jung Hyun;Kim, Se Hee;Jun, Ji Hae
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.312-325
    • /
    • 2015
  • In this review, we summarized the trends of genomics and transcriptomics research on peach, a model species of Rosaceae. Peach genome maps have been developed from various progeny groups with many next-generation sequencing (NGS) based single nucleotide polymorphism markers. Molecular markers of qualitative traits and quantitative trait loci (QTL) such as fruit characteristics, blooming date, and disease resistance have been analyzed. Among many characteristics, markers related to flesh softening and flesh adhesion are useful for marker assisted selection. Through comparative genomics, peach genome has been compared to the genome of Arabidopsis, Populus, Malus, and Fragaria species. Through transcriptomics and proteomics, fruit growth and development, and flavonoid synthesis, postharvest related transcriptomes and disease resistance related proteins have been reported. Recently, development of NGS based markers, construction of core collection of germplasm, and genotyping of various progenies have been preceded. In the near future, accurate QTL analysis and identification of useful genes are expected to establish a foundation for effective molecular breeding.

Status of research on the sweetpotato biotechnology and prospects of the molecular breeding on marginal lands (고구마 생명공학연구 현황과 조건 불리지역 분자육종 전망)

  • Kim, Ho Soo;Yoon, Ung-Han;Lee, Chan-Ju;Kim, So-Eun;Ji, Chang Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.196-206
    • /
    • 2018
  • Dramatic increase in global population accompanied by rapid industrialization in developing countries has led to serious environmental, food, energy, and health problems. The Food and Agriculture Organization of the United Nations has estimated world population will increase to 9.7 billion by 2050 and require approximately 1.7 times more food, and more than 3.5 times energy than that of today. Particularly, sweetpotato is easy to cultivate in unfavorable conditions such as heat, drought, high salt, and marginal lands. In this respect, sweetpotato is an industrially valuable starch crop. To replace crops associated with these food and energy problems, it is necessary to develop new crops with improved nutrients and productivity, that can be grown on marginal lands, including desertification areas using plant biotechnology. For this purpose, exploring useful genes and developing genetically modified crops are essential strategies. Currently, sweetpotato [Ipomoea batatas (L.) Lam.] have been re-evaluated as the best health food and industrial crop that produces starch and low molecular weight antioxidants, such as vitamin A, vitamin E, anthocyanins and carotenoids. This review will focus on the current status of research on sweetpotato biotechnology on omics including genome sequencing, transcriptome, proteomics and molecular breeding. In addition, prospects on molecular breeding of sweetpotato on marginal lands for sustainable development were described.

Connection the Rhizomicrobiome and Plant MAPK Gene Expression Response to Pathogenic Fusarium oxysporum in Wild and Cultivated Soybean

  • Chang, Chunling;Xu, Shangqi;Tian, Lei;Shi, Shaohua;Nasir, Fahad;Chen, Deguo;Li, Xiujun;Tian, Chunjie
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.623-634
    • /
    • 2019
  • Little known the connections between soybeans mitogen-activated protein kinase (MAPK) gene expression and the rhizomicrobiome upon invasion of the root pathogen Fusarium oxysporum. To address this lack of knowledge, we assessed the rhizomicrobiome and root transcriptome sequencing of wild and cultivated soybean during the invasion of F. oxysporum. Results indicated F. oxysporum infection enriched Bradyrhizobium spp. and Glomus spp. and induced the expression of more MAPKs in the wild soybean than cultivated soybean. MAPK gene expression was positively correlated with Pseudomonadaceae but negatively correlated with Sphingomonadaceae and Glomeraceae in both cultivated and wild soybean. Specifically, correlation profiles revealed that Pseudomonadaceae was especially correlated with the induced expression of GmMAKKK13-2 (Glyma.14G195300) and GmMAPK3-2 (Glyma.12G073000) in wild and cultivated soybean during F. oxysporum invasion. Main fungal group Glomeraceae was positively correlated with GmMAPKKK14-1 (Glyma.18G060900) and negatively correlated with GmRaf6-4 (Glyma.02G215300) in the wild soybean response to pathogen infection; while there were positive correlations between Hypocreaceae and GmMAPK3-2 (Glyma.12G073000) and between Glomeraceae and GmRaf49-3 (Glyma.06G055300) in the wild soybean response, these correlations were strongly negative in the response of cultivated soybean to F. oxysporum. Taken together, MAPKs correlated with different rhizomicrobiomes indicating the host plant modulated by the host self-immune systems in response to F. oxysporum.

Folic acid supplementation regulates key immunity-associated genes and pathways during the periparturient period in dairy cows

  • Khan, Muhammad Zahoor;Zhang, Zhichao;Liu, Lei;Wang, Di;Mi, Siyuan;Liu, Xueqin;Liu, Gang;Guo, Gang;Li, Xizhi;Wang, Yachun;Yu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1507-1519
    • /
    • 2020
  • Objective: The current research was aimed to profile the transcriptomic picture of the peripheral blood lymphocytes (PBLs) associated with immunity in Chinese Holsteins supplemented orally with coated folic acid during the periparturient period. Methods: The total of 123 perinatal cows were selected for this study and divided into three groups; group A (n = 41, 240 mg/500 kg cow/d), group B (n = 40, 120 mg/500 kg cow/d) and group C (n = 42, 0 mg/cow/d) based on the quantity of folic acid fed. Three samples of PBLs were selected from each folic acid treated group (high, low, and control) and RNA sequencing method was carried out for transcriptomic analysis. Results: The analysis revealed that a higher number of genes and pathways were regulated in response to high and low folic acid supplementation compared to the controls. We reported the novel pathways tumor necrosis factor (TNF) signaling, antigen processing and presentation, Staphylococcus aureus infection and nuclear factor (NF)-kappa B signaling pathways) and the key genes (e.g. C-X-C motif chemokine ligand 10, TNF receptor superfamily member 1A, cluster difference 4, major histocompatibility complex, class II, DQ beta, NF-kappa-B inhibitor alpha, and TNF superfamily 13) having great importance in immunity and anti-inflammation in the periparturient cows in response to coated folic acid treatment. Conclusion: Collectively, our study profiled first-time transcriptomic analysis of bovine lymphocytes and compared the involved cytokines, genes, and pathways between high vs control and low vs control. Our data suggest that the low folic acid supplementation (120 mg/500 kg) could be a good choice to boost appropriate immunity and anti-inflammation as well as might being applied to the health improvement of perinatal dairy cows.

Screening for candidate genes related with histological microstructure, meat quality and carcass characteristic in pig based on RNA-seq data

  • Ropka-Molik, Katarzyna;Bereta, Anna;Zukowski, Kacper;Tyra, Miroslaw;Piorkowska, Katarzyna;Zak, Grzegorz;Oczkowicz, Maria
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1565-1574
    • /
    • 2018
  • Objective: The aim of the present study was to identify genetic variants based on RNA-seq data, obtained via transcriptome sequencing of muscle tissue of pigs differing in muscle histological structure, and to verify the variants' effect on histological microstructure and production traits in a larger pig population. Methods: RNA-seq data was used to identify the panel of single nucleotide polymorphisms (SNPs) significantly related with percentage and diameter of each fiber type (I, IIA, IIB). Detected polymorphisms were mapped to quantitative trait loci (QTLs) regions. Next, the association study was performed on 944 animals representing five breeds (Landrace, Large White, Pietrain, Duroc, and native Puławska breed) in order to evaluate the relationship of selected SNPs and histological characteristics, meat quality and carcasses traits. Results: Mapping of detected genetic variants to QTL regions showed that chromosome 14 was the most overrepresented with the identification of four QTLs related to percentage of fiber types I and IIA. The association study performed on a 293 longissimus muscle samples confirmed a significant positive effect of transforming acidic coiled-coil-containing protein 2 (TACC2) polymorphisms on fiber diameter, while SNP within forkhead box O1 (FOXO1) locus was associated with decrease of diameter of fiber types IIA and IIB. Moreover, subsequent general linear model analysis showed significant relationship of FOXO1, delta 4-desaturase, sphingolipid 1 (DEGS1), and troponin T2 (TNNT2) genes with loin 'eye' area, FOXO1 with loin weight, as well as FOXO1 and TACC2 with lean meat percentage. Furthermore, the intramuscular fat content was positively associated (p<0.01) with occurrence of polymorphisms within DEGS1, TNNT2 genes and negatively with occurrence of TACC2 polymorphism. Conclusion: This study's results indicate that the SNP calling analysis based on RNA-seq data can be used to search candidate genes and establish the genetic basis of phenotypic traits. The presented results can be used for future studies evaluating the use of selected SNPs as genetic markers related to muscle histological profile and production traits in pig breeding.

Comparative analysis of the transcriptomes and primary metabolite profiles of adventitious roots of five Panax ginseng cultivars

  • Lee, Yun Sun;Park, Hyun-Seung;Lee, Dong-Kyu;Jayakodi, Murukarthick;Kim, Nam-Hoon;Lee, Sang-Choon;Kundu, Atreyee;Lee, Dong-Yup;Kim, Young Chang;In, Jun Gyo;Kwon, Sung Won;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Various Panax ginseng cultivars exhibit a range of diversity for morphological and physiological traits. However, there are few studies on diversity of metabolic profiles and genetic background to understand the complex metabolic pathway in ginseng. Methods: To understand the complex metabolic pathway and related genes in ginseng, we tried to conduct integrated analysis of primary metabolite profiles and related gene expression using five ginseng cultivars showing different morphology. We investigated primary metabolite profiles via gas chromatography-mass spectrometry (GC-MS) and analyzed transcriptomes by Illumina sequencing using adventitious roots grown under the same conditions to elucidate the differences in metabolism underlying such genetic diversity. Results: GC-MS analysis revealed that primary metabolite profiling allowed us to classify the five cultivars into three independent groups and the grouping was also explained by eight major primary metabolites as biomarkers. We selected three cultivars (Chunpoong, Cheongsun, and Sunhyang) to represent each group and analyzed their transcriptomes. We inspected 100 unigenes involved in seven primary metabolite biosynthesis pathways and found that 21 unigenes encoding 15 enzymes were differentially expressed among the three cultivars. Integrated analysis of transcriptomes and metabolomes revealed that the ginseng cultivars differ in primary metabolites as well as in the putative genes involved in the complex process of primary metabolic pathways. Conclusion: Our data derived from this integrated analysis provide insights into the underlying complexity of genes and metabolites that co-regulate flux through these pathways in ginseng.

Identification of genes involved in inbreeding depression of reproduction in Langshan chickens

  • Xue, Qian;Li, Guohui;Cao, Yuxia;Yin, Jianmei;Zhu, Yunfen;Zhang, Huiyong;Zhou, Chenghao;Shen, Haiyu;Dou, Xinhong;Su, Yijun;Wang, Kehua;Zou, Jianmin;Han, Wei
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.975-984
    • /
    • 2021
  • Objective: Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods: A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results: The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion: The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

Exploring differentially expressed genes related to metabolism by RNA-Seq in porcine embryonic fibroblast after insulin treatment

  • Yingjuan, Liang;Jinpeng, Wang;Xinyu, Li;Shuang, Wu;Chaoqian, Jiang;Yue, Wang;Xuechun, Li;Zhong-Hua, Liu;Yanshuang, Mu
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.90.01-90.13
    • /
    • 2022
  • Background: Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin. Objectives: The goal of our research was to see how insulin affected glucose and lipid metabolism in PEFs. Methods: We cultured the PEFs with the addition of insulin and sampled them at 0, 48, and 72 h for RNA-Seq analysis in triplicate for each time point. Results: At 48 and 72 h, 801 and 1,176 genes were differentially expressed, respectively. Of these, 272 up-regulated genes and 264 down-regulated genes were common to both time points. Gene Ontology analysis was used to annotate the functions of the differentially expressed genes (DEGs), the biological processes related to lipid metabolism and cell cycle were dominant. And the DEGs were significantly enriched in interleukin-17 signaling pathway, phosphatidylinositol-3-kinase-protein kinase B signaling pathway, pyruvate metabolism, and others pathways related to lipid metabolism by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Conclusions: These results elucidate the transcriptomic response to insulin in PEF. The genes and pathways involved in the transcriptome mechanisms provide useful information for further research into the complicated molecular processes of insulin in PEF.

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.