• Title/Summary/Keyword: Transcription regulatory element

검색결과 111건 처리시간 0.028초

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong;Byung Soo Kim;Sae Mi Hwang;Hyune Hwan Lee;Il Yup Chung
    • IMMUNE NETWORK
    • /
    • 제16권3호
    • /
    • pp.176-182
    • /
    • 2016
  • CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

Participation of SRE4, an URE1 Enhancer Core Sequence, in the Sterol-Mediated Transcriptional Upregulation of the Human Apolipoprotein E Gene

  • Min, Jung-Hwa;Paik, Young-Ki
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.565-571
    • /
    • 1998
  • The expression of the endogenous human apolipoprotein(apo)E gene was significantly induced when HepG2 cells were treated with exogenous 25-hydroxy-cholesterol. This sterol-mediated apoE gene upregulation appears to require the participation of a positive element for the apoE gene transcription (PET) ( -169/ -140), a core sequence of upstream regulatory element (URE)1 enhancer of the human apoE gene. This PET was renamed as sterol regulatory element (SRE)4 based on its new role as a sensor for the level of intracellular sterol. Furthermore, a gel mobility shift analysis showed that binding activity of the SRE4 binding protein (BP) obtained from HepG2 cells was induced by sterol treatment, while that from either MCF7 or BT20 cells remained unchanged. Binding activity of SRE4BP was also induced in mouse macrophage cells, J774A.1, by sterol treatment, but it was drastically reduced when cells were subjected to treatment of AY-9944, a potent inhibitor for sterol synthesis. However, binding activity of Spl, which is a co-binding protein to the SRE4 region, remained the same in either condition, suggesting that SRE4BP (formally known as PETBP) may be mainly responsible for the sterol-mediated regulation of the apoE gene expression. Deletion analysis of the core binding site of SRE4BP by gel mobility shift assays showed that the minimal sequence of the SRE4BP binding appears to reside between -157 and -140, confirming the identity of SRE4 with the previously determined core sequence of URE1.

  • PDF

Identification of Positive and Negative Regulatory Elements of the Human Cytochrome P4501A2 (CYP1A2) Gene

  • Chung, Injae;Jeong, Choonsik;Jung, Kihwa;Bresnick, Edward
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.81-81
    • /
    • 1997
  • We previously demonstrated an enhancer-like positive regulatory element within a 259-bp sequence (-2352 to-2094 bp) of the human CYP1A2 gene in HepG2 cells. Three protein binding sites were identified by DNase I footprint analyses within the 259-bp sequence: protected region A PRA ( -2283 to-2243 bp), PRB (-2218 to-2187 bp), and PRC (-2124 to-2098 bp) (I. Chung and E. Bresnick, Mol. Pharmacol. 47, 677-685, 1995). In the present study, the functional significance of those protected regions was examined. Transfection experiments with deletion and substitution mutants defined the PRB and PRC as containing positive and negative regulatory elements, respectively. Human breast carcinoma MCF-7 cells were cotransfected with a hepatocyte nuclear factor-1 (HNF-1) expression vector and CYP1A2 promoter-or thymidine kinase promoter-luciferase remoter gene constructs. HNF-1, which contributes to the liver specificity of genes, enhanced reporter gene activity in a PRC sequence-dependent manner. These results suggested that PRC could exist bound to a repressor which was displaceable by other transcription factors such as HNF-1. Results obtained by transfection of HepG2 hepatoma cells with various PRB substitution mutant-luciferase gene fusion constructs indicated that the entire sequence of PRB was necessary for promoter activity. Consequently, the regulation of CYP1A3 expression is very complex, requiring a number of both positive and negative regulatory factors.

  • PDF

Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

  • Baek, Dongwon;Chun, Hyun Jin;Yun, Dae-Jin;Kim, Min Chul
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.697-705
    • /
    • 2017
  • The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.

Cell cycle regulatory element in the promoter of the human thymidine kinase gene and its binding to factors

  • Kim, Yong-Kyu
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.9-15
    • /
    • 1995
  • When quiescent cells ate stimulated to enter the cell cycle, the thymidine kinase(TK) gene is transcriptionally activated at the border of Gl and 5. In this report we show that the human TK promoter contains multiple protein-binding sites. By site-directed mutagenesis, we identified a protein-binding site on the human TK promoter requited for conferring Gl-S-regulated transcription to a heterologous promoter and dissociated it functionally from an adjacent protein-binding domain containing an inverted CCAAT motif requited for high basal level expression. Substitution-mutation of this site results in constitutive expression of the neo reporter gene in serum-stimulated fibroblasts, as well as in cells arrested in mid-Gl by a temperature-sensitive mutation. The regulatory domains for the human TK promoter exhibit interesting symmetrical features, including a set of CCAAT motifs and sites similar to the novel Yi protein-binding site recently discovered in the mouse TK promoter. Thus, components of the hTK complex is important for hTK gene regulation.

  • PDF

고지방식이로 유도된 비만 마우스에서 정향(丁香)의 항비만 효과 (The Anti-Obesity Activity of Syzygium aromaticum L. in High-Fat Diet-induced Obese Mice)

  • 안희연;노성수;신미래
    • 대한본초학회지
    • /
    • 제39권1호
    • /
    • pp.11-21
    • /
    • 2024
  • Objectives : This study aims to analyze the anti-obesity effect of Syzygium aromaticum L. (SA) in obese mice made by a 60% high-fat diet (HFD). Methods : The antioxidant activities of SA were evaluated in vitro. To assess the anti-obesity effect of SA, male C57BL/6 mice were divided into five groups: Normal, Control, GC100 (Garcinia cambogia 100 mg/kg/day), SA100 (SA 100 mg/kg/day), SA200 (SA 200 mg/kg/day). All groups underwent a 6-week regimen of HFD and oral administration, except for the Normal group. Subsequently, we performed blood analysis, western blotting, and histopathological staining. Results : SA demonstrated effectiveness in antioxidant measurements. SA treatment resulted in a significant decrease in body weight gain, along with reductions in liver and epididymal fat weights. Serum triglyceride (TG), total cholesterol (TC), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and leptin levels were reduced with SA treatment. Moreover, in the SA100 group, the reduction of both TG and TC synthesis was caused by inhibiting the sterol regulatory element-binding transcription factor 1 (SREBP-1) and sterol regulatory element-binding transcription factor 2 (SREBP-2) through the Sirtuin 1 (Sirt1)/phospho-AMP-activated protein kinase (p-AMPK) pathway. Furthermore, SA treatment at a dose of 100 mg/kg reduced the accumulation of lipid droplets in the liver and the adipocyte size of the epididymal fat. Conclusion : Our research reveals the anti-obesity effects of SA by demonstrating its ability to inhibit body weight gain and lipid accumulation, suggesting that SA might be promising for obesity treatment.

cAMP Response Element-Binding Protein- and Phosphorylation-Dependent Regulation of Tyrosine Hydroxylase by PAK4: Implications for Dopamine Replacement Therapy

  • Won, So-Yoon;You, Soon-Tae;Choi, Seung-Won;McLean, Catriona;Shin, Eun-Young;Kim, Eung-Gook
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.493-499
    • /
    • 2021
  • Parkinson's disease (PD) is characterized by a progressive loss of dopamine-producing neurons in the midbrain, which results in decreased dopamine levels accompanied by movement symptoms. Oral administration of l-3,4-dihydroxyphenylalanine (L-dopa), the precursor of dopamine, provides initial symptomatic relief, but abnormal involuntary movements develop later. A deeper understanding of the regulatory mechanisms underlying dopamine homeostasis is thus critically needed for the development of a successful treatment. Here, we show that p21-activated kinase 4 (PAK4) controls dopamine levels. Constitutively active PAK4 (caPAK4) stimulated transcription of tyrosine hydroxylase (TH) via the cAMP response element-binding protein (CREB) transcription factor. Moreover, caPAK4 increased the catalytic activity of TH through its phosphorylation of S40, which is essential for TH activation. Consistent with this result, in human midbrain tissues, we observed a strong correlation between phosphorylated PAK4S474, which represents PAK4 activity, and phosphorylated THS40, which reflects their enzymatic activity. Our findings suggest that targeting the PAK4 signaling pathways to restore dopamine levels may provide a new therapeutic approach in PD.

Networks of MicroRNAs and Genes in Retinoblastomas

  • Li, Jie;Xu, Zhi-Wen;Wang, Kun-Hao;Wang, Ning;Li, De-Qiang;Wang, Shang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6631-6636
    • /
    • 2013
  • Through years of effort, researchers have made notable progress in gene and microRNA fields about retinoblastoma morbidity. However, experimentally validated data for genes, microRNAs (miRNAs) and transcription factors (TFs) can only be found in a scattered form, which makes it difficult to conclude the relationship between genes and retinoblastoma systematically. In this study, we regarded genes, miRNAs and TFs as elements in the regulatory network and focused on the relationship between pairs of examples. In this way, we paid attention to all the elements macroscopically, instead of only researching one or several. To show regulatory relationships over genes, miRNAs and TFs clearly, we constructed 3 regulatory networks hierarchically, including a differentially expressed network, a related network and a global network, for analysis of similarities and comparison of differences. After construction of the three networks, important pathways were highlighted. We constructed an upstream and downstream element table of differentially expressed genes and miRNAs, in which we found self-adaption relations and circle-regulation. Our study systematically assessed factors in the pathogenesis of retinoblastoma and provided theoretical foundations for gene therapy researchers. In future studies, especial attention should be paid to the highlighted genes and miRNAs.

Stress Responses through Heat Shock Transcription Factor in S. cerevisiae

  • Hahn, Ji-Sook;Hu, Zhanzhi;Thiele, Dennis J.;Lyer, Vishwanath R.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2005년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.105-109
    • /
    • 2005
  • Heat Shock Transcription Factor (HSF), and the promoter heat Shock Element (HSE), are among the most highly conserved transcriptional regulatory elements in nature. HSF mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. While HSF is essential for cell viability in yeast, oogenesis and early development in Drosophila, extended life-span in C. elegans, and extra-embryonic development and stress resistance in mammals, little is known about its full range of biological target genes. We used whole genome analyses to identify virtually all of the direct transcriptional targets of yeast HSF, representing nearly three percent of the genomic loci. The majority of the identified loci are heat-inducibly bound by yeast HSF, and the target genes encode proteins that have a broad range of biological functions including protein folding and degradation, energy generation, protein secretion, maintenance of cell integrity, small molecule transport, cell signaling, and transcription. Approximately 30% of the HSF direct target genes are also induced by the diauxic shift, in which glucose levels begin to be depleted. We demonstrate that phosphorylation of HSF by Snf1 kinase is responsible for expression of a subset of HSF targets upon glucose starvation.

  • PDF

Promoter Structure and Transcriptional Activity of Human Complement Receptor Type I (CR1) Gene

  • Kim, Jae-Hyun;Lee, Young-Ju;Nam, Ju-Ryoung;Shim, Hee-Bo;Choe, Soo-Young
    • Animal cells and systems
    • /
    • 제7권1호
    • /
    • pp.63-68
    • /
    • 2003
  • Until recently, interest in human complement receptor type I (CR1) has focused on immune complex processing, which contributed to our understanding of regulatory mechanism of complement activation. However, the promoter structure and transcriptional regulation of human CR1 gene has not been clear. To study the unique regulation of human CR1 gene expression, we assessed promoter activity of the $5^1$-flanking region of human CR1 gene using transient transfection and gel mobility shift assays. In this study we demonstrated that NF-Y binds to the inverted CCAAT element and that the functional interaction with protein(s) which bind to the GC-rich motif may be necessary for optimal transcription of human CR1 gene. We also show that sequence elements which located at-95/58 and +45/+50 are important for optimal transcription of CR1 gene.