• Title/Summary/Keyword: Transcription Culture

Search Result 296, Processing Time 0.031 seconds

Implication of High Mobility Group Box 1 (HMGB1) in Multicellular Tumor Spheroid (MTS) Culture-induced Epithelial-mesenchymal Transition (Multicellular tumor spheroid (MTS) 배양에 의한 EMT에서 HMGB1의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.

Elimination of Apple stem grooving virus from 'Mansoo' pear (Pyrus pyrifolia L.) by an antiviral agent combined with shoot tip culture (항바이러스제 처리와 경정배양에 의한 배(Pyrus pyrifolia L.) '만수'의 Apple stem grooving virus 무병화)

  • Cho, Kang Hee;Shin, Juhee;Kim, Dae-Hyun;Park, Seo Jun;Kim, Se Hee;Chun, Jae An;Kim, Mi Young;Han, Jeom Hwa;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.391-396
    • /
    • 2016
  • In this study, in vitro-cultured 'Mansoo' pear (Pyrus pyrifolia L.) plants infected with Apple stem grooving virus (ASGV) were used for testing the efficiency of the virus elimination methods. The shoot tips cut from infected plants were treated by thermotherapy ($37^{\circ}C$), cold therapy ($4^{\circ}C$), chemotherapy with ribavirin, and combination of these methods. Treatment periods were 2, 4, and 8 weeks, and concentrations of ribavirin were 20 and $40mg{\cdot}L^{-1}$. The efficiency of ASGV elimination was evaluated by reverse transcription polymerase chain reaction. The shoot survival rate was the highest at 100% after cold therapy, chemotherapy, and combination of two methods, while the rate was the lowest at 33.3% after thermotherapy for 2 weeks. The shoot survival rate after chemotherapy decreased gradually as the treatment period was prolonged. The ASGV elimination rate was the highest at 100% after ribavirin treatment at a concentration of $40mg{\cdot}L^{-1}$ and combination of ribavirin treatment and thermotherapy for 2 weeks, whereas the ASGV elimination rate after cold therapy was the lowest at 16.7%. However, the efficiency of ASGV elimination was enhanced up to 43.3% by the combination of cold therapy and ribavirin treatment. The efficiency of ASGV elimination for all treatments was increased as the treatment period was prolonged. Based on these results, we suggest that ribavirin treatment at a concentration of $20mg{\cdot}L^{-1}$ for 4 weeks or at a concentration of $40mg{\cdot}L^{-1}$ for 2 weeks combined with shoot tip culture was efficient for the elimination of ASGV from pear.

Epidemics of Aseptic Meningitis in Kyoungsangnamdo from March to October, 1997 (1997년 경상남도 중부지방에서 유행한 무균성 뇌막염의 임상적 고찰)

  • Park, Sun Young;Kwon, Oh Su;Kim, Won Youb;Jung, Won Jo;Ma, Sang Hyouk;Kim, Sang Ki;Nam, Sung Jin;Jo, Sung Rae;Gu, Bon Chun;Lee, Kyu Man
    • Pediatric Infection and Vaccine
    • /
    • v.5 no.1
    • /
    • pp.104-114
    • /
    • 1998
  • Purpose : Enteroviruses are the most common cause of aseptic meningitis. The epidemics of aseptic meningitis in 1993 and 1996 were mostly caused by echovirus type 9. Identification of the causative virus of aseptic meningitis in epidemics, is very important not only for diagnosis but also for epidemiologic purpose. The purpose of this study was to identify the causative virus and investigate the relationship between aseptic meningitis, prevailed in Masan and surrounding areas in Kyoungsangnamdo in 1997, and its clinical manifestations. Methods : One hundred twenty eight cerebrospinal fluid(CSF) and 239 stool specimens were obtained from 239 patients(213 children and 26 adult patients) with aseptic meningitis were admitted to Masan Fatima Hospitals from March to October 1997. Viral isolation and serotype identification was performed by cell culture and immunofluorescent test. Enteroviruses not typed by immunofluorescent test was confirmed by reverse transcription-polymerase chain reaction(RT-PCR). Results : 1) The peak incidence was noted in June. 2) The age of 239 patients(pediatrics-213 cases, internal medicine-26 cases) that were diagnosed ranged from neonate to 35 years, the age of the patients of pediatrics ranged from neonate to 15years(mean 4.9 years), the age of the patients of internal medicine (above 16 years) ranged from 16 years to 35 years(mean 24.2 years). 3) Fifty-three(41.4%) of 128 CSF specimens were positive for enteroviruses, and 163(68.2%) of 239 stool specimens were positive for enteroviruses respectively. 4) Serotypes of 53 enteroviruses isolated from CSF were 16(30.2%) of echovirus type 30, 6(11.3%) of echovirus type 6, 1 of echovirus type 4, 4 of untyped echovirus, 1 of coxsackievirus type B5, and 24 isolates of untyped enteroviruses. Of 163 enterovirus isolated from stool were 72(44.2%) of echovirus type 30, 21(12.9%) of echovirus type 6, 1 of echovirus type 4, 17(10.4%) of undetermined subtyped echovirus, 1 of coxsackievirus type B5, 2 of A24, 3 of undetermined subtyped coxsackievirus type B, and 46 isolates of untyped enterovirus. Conclusion : There were epidemics of aseptic meningitis in the central areas of Kyoungsangnamdo from March to October 1997. The main causative organism was thought to be the echovirus type 30, and echovirus type 4, 6, coxsackievirus B5 and A24 were also thought to contribute to the epidemics.

  • PDF

Relationships of the Lithium-Induced Growth Inhibition of C6 Rat Glioma Cell to Expression of the Insulin-like Growth Factor System Components (C6 Rat Glioma Cell에서 리튬에 의한 성장 억제와 Insulin-like Growth Factor System Components의 발현과의 관계)

  • Kim, I.A.;Jin, E.J.;Cho, E.J.;Sohn, S.H.;Lee, C.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.563-570
    • /
    • 2004
  • The insulin-like growth factor(IGF) system, consisting of IGFs-I and -II ligands and their receptors and six IGF-binding proteins(IGFBPs), plays an important role in survival, proliferation and differentiation of a variety of cell types. Lithium is a known modulator of survival and proliferation of many cell types in vitro. The present study was undertaken to investigate the relationship between LiCI-induced changes in cell survival and growth and the expression of the IGF system components in C6 rat glioma cell line which, besides IGF-I and its receptor, is known to express IGFBP-3 as its major IGF carrier. When C6 cells were cultured for 24h in the absence or presence of 2mM or 5mM LiCl in a 10% serwn-containing medium, the viability and the number of cells were not affected by added lithium. In 72-h culture, however, C6 cells clearly exhibited a dose-dependent response to added LiCl. The cells cultured for 72h in the presence of 0, 2mM and 5mM LiCl exhibited a typical mitotic, a growth-arrested and an apoptotic appearances, respectively. Moreover, the apoptotic cells were accompanied by reduced expression of IGF-I, IGF-I receptor and IGFBP-3 as examined by semi-quantitative reverse transcription-polymerase chain reaction. Interestingly, blockade of IGFBP-3 mRNA translation by addition of 101${\mu}M$ IGFBP-3 anti-sense oligodeoxyribonucleotide in serum-free, 24-h culture resulted in a decrease in the number of cells as well as relative abundance of the target mRNA. In summary, results suggest that the cytotoxic effect of lithium in C6 cell is likely to be mediated, in part, by suppression by this agent of the expression of the IGF system components. In this regard, IGFBP-3 may play at least a 'permissive' role in normal proliferation of this cell.

Characterization and Genetic Profiling of the Primary Cells and Tissues from Mandible of Mouse Fetus and Neonate

  • Kang, Jung-Han;Nam, Hyun;Park, Soon-Jung;Oh, Keun-Hee;Lee, Dong-Seup;Cho, Jae-Jin;Lee, Gene
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2007
  • The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (${\alpha}-SMA$), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.

High-level Secretory Expression of Recombinant $\beta$-Agarase from Zobellia galactanivorans in Pichia pastoris (Pichia pastoris에서 Zobellia galactanivorans 유래 재조합 $\beta$-Agarase의 고효율 분비생산)

  • Seok, Ji-Hwan;Park, Hee-Gyun;Lee, Sang-Hyeon;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Jong-Hyun;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • The gene encoding $\beta$-agarase (agaB) which hydrolyzes $\beta$-1,4 linkages of agarose from Zobellia galactanivorans was cloned and fused to Saccharomyces cerevisiae mating factor alpha-1 secretion signal ($MF{\alpha}1$), in which the transcription of $MF{\alpha}1$-AgaB was under the control of AOX1 (alcohol oxidase 1, methanol inducible) promoter. The constructed plasmid pPIC-AgaB (9 kb) was integrated into HIS4 gene locus of Pichia pastoris genome. Successful integration was confirmed by performing colony PCR. The transformed cells showed red halos around its colonies in methanol agar plate by adding iodine solution, indicating the active expression of agaB in P.pastoris. By SDS-PAGE and zymographic analysis, the molecular weight of $\beta$-agarase was estimated to be a 53 kDa and about 15% N-linked glycosylation was occurred. The activity of extracellular $\beta$-agarase reached 1.34, 1.42 and 1.53 units/mL by inducing 0.1, 0.5, and 1% methanol, respectively, at baffled flask culture of P.pastoris GS115/pPIC-AgaB for 48 hr. Most of the enzyme activity was found in the extacellular fraction and the secretion efficiency showed 98%. Thermostability of recombinant $\beta$-agarase was also increased by glycosylation.

Whitening Effect and Skin Regeneration Effect of Red Sea Cucumber Extract (홍해삼 추출물의 멜라닌 형성 억제를 통한 미백효과 및 피부 재생효과에 관한 연구)

  • Jeon, Mi Ji;Kim, Eun Ji;Kim, Geun Tae;Kim, Ga Yeon;Lee, Seung Jae;Jung, In Cheol;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.681-687
    • /
    • 2018
  • Recently, several researchers have been developing cosmetics from natural ingredients for skin whitening and anti-aging products. The red sea cucumber (RSC), Apostichopus japonicas, is a species of sea cucumber in the family stichopodiae, which is widely distributed in China, Japan, and Korea. To use Red Sea Cucumber as a cosmetic ingredient, its inhibitory effects on melanogenesis and the anti-aging effects of RSC extracts were investigated. First, a tyrosinase activity assay was performed, which showed that RSC inhibited tyrosinase activity at a concentration of $200{\mu}g/ml$. An MTT assay was carried out to evaluate cell toxicity, and the results showed that RSC extract has no cytotoxicity in HaCaT cells. Furthermore, the mRNA expression levels of tyrosinase, tyrosinase related protein 1 (TRP-1), tyrosinase related protein 2 (TRP-2), microphthalmia-associated transcription factor (MITF), and matrix metalloproteinase (MMPs) genes treated with RSC extract in B16F10 and HaCaT cells decreased. Moreover, a wound-healing assay was performed to identify the cell regeneration effect of RSC extracts. Also, a skin turnover effect was confirmed by creating a three-dimensional cell culture with HaCaT and human fibroblasts. Altogether, the results suggested that Red Sea Cucumber may possess a high ability to induce whitening and anti-wrinkle effects as a cosmeceutical ingredient.

Secretory Overexpression and Characterization of Human Procarboxypeptidase B from Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Human Procarboxypeptidase B의 과발현 분비생산과 그 특성)

  • Kim, Mi-Jung;Kim, Mi-Jin;Lee, Jae-Hyung;Kim, Yeon-Hee;Seo, Jin-So;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.49-54
    • /
    • 2008
  • The gene encoding human pancreatic pro-carboxypeptidase B (CPB) was cloned and fused to Saccharomyces cerevisiae mating factor alpha-1 secretion signal $(MF{\alpha}1)$, in which the transcription of $MF{\alpha}1$-pro-CPB was under the control of GAL10 promoter. The constructed plasmid $pY{\alpha}$-hproCPB(7.72 kb) was transformed into S. cerevisiae 2805. The recombinant human pro-CPB (hproCPB) was successfully expressed in S. cerevisiae after induction of galactose, and could be secreted into the culture medium. By analyses of SDS-PAGE and western blotting, the molecular weight of the purified hproCPB was estimated to be a 45.9kDa. The activity of extracellular hCPB after removal of pro-region by trypsin treatment reached about 10.16 unit/ml at batch culture of S. cerevisiae $2805/pY{\alpha}$-hproCPB for 60 h. Also, the Km value of partially purified recombinant hCPB is about 0.43 mM.

Anti-Oxidative, Anti-Inflammatory, and Anti-Melanogenic Activities of Endlicheria Anomala Extract (Endlicheria anomala (Nees) Mez 추출물의 항산화, 항염증 및 미백 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.433-441
    • /
    • 2013
  • In this study, the anti-oxidative, anti-inflammatory, anti-melanogenic activities of Endlicheria anomala (Nees) Mez methanol extract (EAME) were evaluated by use of in vitro assays and cell culture model systems. The results revealed that EAME scavenges various radicals such as 1,1-diphenyl-2-picryl hydrazyl hydrogen peroxide induced reactive oxygen species, and lipopolysaccharide induced nitric oxide. Furthermore, EAME induced the expression of anti-oxidative enzymes such as heme oxygenase 1, thioredoxin reductase 1, NAD(P)H dehydrogenase 1, and their upstream transcription factor, nuclear factor-E2-related factor 2. Moreover, EAME inhibited in vitro DOPA oxidation and 3-isobutyl-1-methylxanthine induced melanogenesis in B16F10 cells. Its anti-melanogenic activity will have originated from the inhibition of tyrosinase enzyme activity and melanogenesis related protein expression. Taken together, these results provide the important new insight that E. anomala possesses various biological activities such as anti-oxidative, anti-inflammatory, and anti-melanogenic. Therefore, it might be utilized as a promising material in the fields of nutraceuticals and cosmetics.

Expression and Secretion of the Insulin-like Growth Factor System Components by Pig Liver Cells

  • Kim, I.;Jin, E.J.;Baik, K.;Park, C.H.;Kim, W.K.;Kang, C.W.;Ko, Y.;Jang, I.;Choi, W.S.;Lee, C.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.9
    • /
    • pp.1244-1251
    • /
    • 2008
  • The aim of the present study was to delineate the expression and secretion of insulin-like growth factor (IGF) system components by pig liver cells. Hepatocytes were prepared from 3-wk-old weanling piglets following a two-step collagenase perfusion procedure, after which the cells were incubated for 24 or 48 h at a density of $2{\pm}10^5$ cells per 35-mm dish in 2-ml Williams' medium E. The cells were found to express the genes encoding IGF-I, IGF-binding proteins (IGFBPs)-2 and -3 and acid-labile subunit (ALS) by reverse transcription-polymerase chain reaction (RT-PCR) following the culture. However, IGF-I was localized to hepatocytes by immunohistochemical analysis, whereas IGFBP-3 was localized to endothelial cells, but not to hepatocytes. This indicated that the IGFBP-3 gene expression detected by RT-PCR was likely to have been contributed by unidentified non-parenchymal cells that had not been removed during the hepatocyte preparation. The conditioned culture medium (CCM) of the cells contained immunoreactive IGF-I and IGF-II, with the latter being seven-fold more abundant than the former. The CCM also contained 43-, 40-, 34-, 31-kDa doublet and 26-kDa IGFBPs as examined by Western ligand blotting. The 40-, 34- and 31-kDa doublet IGFBPs were approximately three-fold as abundant as the 43- and 26-kDa IGFBPs. Moreover, the 43- and 40-kDa doublet and the 34-kDa IGFBPs were immunoprecipitable with IGFBP-3 and IGFBP-2 antibodies, respectively. Overall, these results are similar to those known in the rat, which suggests that the IGF system components are likely to be expressed and secreted in pig liver in a manner similar to that in rat liver.