• 제목/요약/키워드: Transcript factor

검색결과 83건 처리시간 0.027초

The Effect of Growth Hormone on mRNA Expression of the GABAB1 Receptor Subunit and GH/IGF Axis Genes in a Mouse Model of Prader-Willi Syndrome

  • Lee, Jin Young;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제1권2호
    • /
    • pp.54-59
    • /
    • 2015
  • Purpose: Growth hormone (GH) therapy substantially improves several cognitive functions in PWS. However, the molecular mechanisms underlying the beneficial effects of GH on cognition remain unclear in PWS. In this study, we investigated the effects of recombinant human GH on the gene expression of GABAB receptor subunits and GH/insulin-like growth factor (IGF) axis genes in the brain regions of PWS-mimicking mice (Snord116del). Methods: Snord116del mice were injected subcutaneously with 1.0 mg/kg GH or saline, once daily for 7 days. The collected brain tissues were analyzed for mRNA content using quantitative PCR (qPCR) in the cerebellum, hippocampus, and cerebral cortex. Results: GH increased the mRNA expression level of the $GABA_{B1}$ receptor subunit ($GABA_{BR1}$) and IGF-1R in the cerebellum. Furthermore, a significant positive correlation was found between the level of $GABA_{BR1}$ mRNA and the expression of the IGF-1R transcript. GH also induced an increase in the mRNA expression of IGF-2 and IGF-2R in the cerebellum. Conclusion: These data indicate that GH may provide beneficial effects on cognitive function through its influences on the expression of $GABA_{BR1}$ and GH/IGF-1 axis genes in PWS patients.

Effect of Trolox on Altered Vasoregulatory Gene Expression in Hepatic Ischemia/Reperfusion

  • Eum, Hyun-Ae;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.225-231
    • /
    • 2004
  • This study was designed to investigate the effect of Trolox, a hydrophilic analogue of vitamin E, on the alteration of vasoregulatory gene expression during hepatic ischemia and reperfusion (I/R). Rats were subjected to 60 min of hepatic ischemia in vivo. The rats were treated intravenously with Trolox (2.5 mg/kg) or the vehicle as a control 5 min before reperfusion. Liver samples were obtained 5 h after reperfusion for a RT-PCR analysis on the mRNA for the genes of interest. These mRNA peptides are endothelin-1 (ET -1), potent vasoconstrictor peptide, its receptor $ET_A$ and $ET_B$, vasodilator endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and cyclooxygenase-2 (COX-2). It was seen that serum alanine aminotransferase and lipid peroxi-dation levels were markedly increased after I/R and Trolox significantly suppressed this increase. In contrast, the glutathione concentration decreased in the I/R group, and this decrease was inhibited by Trolox. ET-1 mRNA expression was increased by I/R, an increase which was prevented by Trolox. The mRNA levels for $ET_A$ receptor was significantly decreased, whereas ET$_{B}$ receptor transcript increased in the I/R group. The increase in $ET_A$ was prevented by Trolox. The mRNA levels for iNOS and HO-1 significantly increased in the I/R group and Trolox attenuated this increase. There were no significant differences in eNOS mRNA expression among any of the experimental groups. The mRNA levels for COX-2 and TNF-$\alpha$ significantly increased in I/R group and Trolox also attenuated this increase. Our findings suggest that I/R induces an imbalanced hepatic vasoregulatory gene expression and Trolox ameliorates this change through its free radical scavenging activity.y.

Functional Modification of a Specific RNA with Targeted Trans-Splicing

  • Park, Young-Hee;Kim, Sung-Chun;Kwon, Byung-Su;Jung, Heung-Su;Kim, Kuchan;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • 제2권1호
    • /
    • pp.45-52
    • /
    • 2004
  • The self-splicing group I intron from Tetrahymena thermophila has been demonstrated to perform splicing reaction with its substrate RNA in the trans configuration. In this study, we explored the potential use of the trans-splicing group I ribozymes to replace a specific RNA with a new RNA that exerts any new function we want to introduce. We have chosen thymidine phosphorylase (TP) RNA as a target RNA that is known as a valid cancer prognostic factor. Cancer-specific expression of TP RNA was first evaluated with RT-PCR analysis of RNA from patients with gastric cancer. We determined next which regions of the TP RNA are accessible to ribozymes by employing an RNA mapping strategy, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. A specific ribozyme recognizing the most accessible sequence in the TP RNA with firefly luciferase transcript as a 3' exon was then developed. The specific trans-splicing ribozyme transferred an intended 3' exon tag sequence onto the targeted TP transcripts, resulting in a more than two fold induction of the reporter activity in the presence of TP RNA in mammalian cells, compared to the absence of the target RNA. These results suggest that the Tetrahymena ribozyme can be a potent anti-cancer agent to modify TP RNAs in tumors with a new RNA harboring anti-cancer activity.

Role of MAPK Signaling Pathways in Regulating the Hydrophobin Cryparin in the Chestnut Blight Fungus Cryphonectria parasitica

  • So, Kum-Kang;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.362-369
    • /
    • 2017
  • We assessed the regulation of cryparin, a class II hydrophobin, using three representative mitogen-activated protein kinase (MAPK) pathways in Cryphonectria parasitica. Mutation of the CpSlt2 gene, an ortholog of yeast SLT2 in the cell wall integrity (CWI) pathway, resulted in a dramatic decrease in cryparin production. Similarly, a mutant of the CpBck1 gene, a MAP kinase kinase kinase gene in the CWI pathway, showed decreased cryparin production. Additionally, mutation of the cpmk1 gene, an ortholog of yeast HOG1, showed decreased cryparin production. However, mutation of the cpmk2 gene, an ortholog of yeast Kss1/Fus3, showed increased cryparin production. The easy-wet phenotype and accumulation of the cryparin transcript in corresponding mutants were consistent with the cryparin production results. In silico analysis of the promoter region of the cryparin gene revealed the presence of binding motifs related to downstream transcription factors of CWI, HOG1, and pheromone responsive pathways including MADS-box- and Ste12-binding domains. Real-time reverse transcriptase PCR analyses indicated that both CpRlm1, an ortholog of yeast RLM1 in the CWI pathway, and cpst12, an ortholog of yeast STE12 in the mating pathway, showed significantly reduced transcription levels in the mutant strains showing lower cryparin production in C. prasitica. However, the transcription of CpMcm1, an ortholog of yeast MCM1, did not correlate with that of the mutant strains showing downregulation of cryparin. These results indicate that three representative MAPK pathways played a role in regulating cryparin production. However, regulation varied depending on the MAPK pathways: the CWI and HOG1 pathways were stimulatory, whereas the pheromone-responsive MAPK was repressive.

Ectopic Expression of a Cold-Responsive OsAsr1 cDNA Gives Enhanced Cold Tolerance in Transgenic Rice Plants

  • Kim, Soo-Jin;Lee, Sang-Choon;Hong, Soon Kwan;An, Kyungsook;An, Gynheung;Kim, Seong-Ryong
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.449-458
    • /
    • 2009
  • The OsAsr1 cDNA clone was isolated from a cDNA library prepared from developing seed coats of rice (Oryza sativa L.). Low-temperature stress increased mRNA levels of OsAsr1 in both vegetative and reproductive organs. In situ analysis showed that OsAsr1 transcript was preferentially accumulated in the leaf mesophyll tissues and parenchyma cells of the palea and lemma. For transgenic rice plants that over-expressed full-length OsAsr1 cDNA in the sense orientation, the Fv/Fm values for photosynthetic efficiency were about 2-fold higher than those of wild type-segregating plants after a 24-h cold treatment. Seedlings exposed to prolonged low temperatures were more tolerant of cold stress, as demonstrated during wilting and regrowth tests. Interestingly, OsAsr1 was highly expressed in transgenic rice plants expressing the C-repeat/dehyhdration responsive element binding factor 1 (CBF1), suggesting the regulation of OsAsr1 by CBF1. Taken together, we suggest that OsAsr1 gene play an important role during temperature stress, and that this gene can be used for generating plants with enhanced cold tolerance.

Regulation of appetite-related neuropeptides by Panax ginseng: A novel approach for obesity treatment

  • Phung, Hung Manh;Jang, Dongyeop;Trinh, Tuy An;Lee, Donghun;Nguyen, Quynh Nhu;Kim, Chang-Eop;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.609-619
    • /
    • 2022
  • Obesity is a primary factor provoking various chronic disorders, including cardiovascular disease, diabetes, and cancer, and causes the death of 2.8 million individuals each year. Diet, physical activity, medications, and surgery are the main therapies for overweightness and obesity. During weight loss therapy, a decrease in energy stores activates appetite signaling pathways under the regulation of neuropeptides, including anorexigenic [corticotropin-releasing hormone, proopiomelanocortin (POMC), cholecystokinin (CCK), and cocaine- and amphetamine-regulated transcript] and orexigenic [agoutirelated protein (AgRP), neuropeptide Y (NPY), and melanin-concentrating hormone] neuropeptides, which increase food intake and lead to failure in attaining weight loss goals. Ginseng and ginsenosides reverse these signaling pathways by suppressing orexigenic neuropeptides (NPY and AgRP) and provoking anorexigenic neuropeptides (CCK and POMC), which prevent the increase in food intake. Moreover, the results of network pharmacology analysis have revealed that constituents of ginseng radix, including campesterol, beta-elemene, ginsenoside Rb1, biotin, and pantothenic acid, are highly correlated with neuropeptide genes that regulate energy balance and food intake, including ADIPOQ, NAMPT, UBL5, NUCB2, LEP, CCK, GAST, IGF1, RLN1, PENK, PDYN, and POMC. Based on previous studies and network pharmacology analysis data, ginseng and its compounds may be a potent source for obesity treatment by regulating neuropeptides associated with appetite.

Mitochondrial Transplantation Ameliorates the Development and Progression of Osteoarthritis

  • A Ram Lee;Jin Seok Woo;Seon-Yeong Lee;Hyun Sik Na;Keun-Hyung Cho;Yeon Su Lee;Jeong Su Lee;Seon Ae Kim;Sung-Hwan Park;Seok Jung Kim;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.14.1-14.17
    • /
    • 2022
  • Osteoarthritis (OA) is a common degenerative joint disease characterized by breakdown of joint cartilage. Mitochondrial dysfunction of the chondrocyte is a risk factor for OA progression. We examined the therapeutic potential of mitochondrial transplantation for OA. Mitochondria were injected into the knee joint of monosodium iodoacetate-induced OA rats. Chondrocytes from OA rats or patients with OA were cultured to examine mitochondrial function in cellular pathophysiology. Pain, cartilage destruction, and bone loss were improved in mitochondrial transplanted-OA rats. The transcript levels of IL-1β, TNF-α, matrix metallopeptidase 13, and MCP-1 in cartilage were markedly decreased by mitochondrial transplantation. Mitochondrial function, as indicated by membrane potential and oxygen consumption rate, in chondrocytes from OA rats was improved by mitochondrial transplantation. Likewise, the mitochondrial function of chondrocytes from OA patients was improved by coculture with mitochondria. Furthermore, inflammatory cell death was significantly decreased by coculture with mitochondria. Mitochondrial transplantation ameliorated OA progression, which is caused by mitochondrial dysfunction. These results suggest the therapeutic potential of mitochondrial transplantation for OA.

LncRNA PART1 Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating TFAP2C/DUSP5 Axis via miR-302a-3p

  • Min Zeng;Xin Wei;Jinchao Zhou;Siqi Luo
    • Korean Circulation Journal
    • /
    • 제54권5호
    • /
    • pp.233-252
    • /
    • 2024
  • Background and Objectives: Myocardial ischemia-reperfusion injury (MIRI) refers to the damage of cardiac function caused by restoration of blood flow perfusion in ischemic myocardium. However, long non-coding RNA prostate androgen regulated transcript 1 (PART1)'s role in MIRI remain unclear. Methods: Immunofluorescence detected LC3 expression. Intermolecular relationships were verified by dual luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assays analyzed cell viability and apoptosis. The release of lactate dehydrogenase was tested via enzyme-linked immunosorbent assay (ELISA). Left anterior descending coronary artery surgery induced a MIRI mouse model. Infarct area was detected by 2,3,5-triphenyltetrazolium chloride staining. Hematoxylin and eosin staining examined myocardial injury. ELISA evaluated myocardial marker (creatine kinase MB) level. Results: PART1 was decreased in hypoxia/reoxygenation (H/R) induced AC16 cells and MIRI mice. PART1 upregulation attenuated the increased levels of Bax, beclin-1 and the ratio of LC3II/I, and enhanced the decrease of Bcl-2 and p62 expression in H/R-treated cells. PART1 upregulation alleviated H/R-triggered autophagy and apoptosis via miR-302a-3p. Mechanically, PART1 targeted miR-302a-3p to upregulate transcription factor activating enhancer-binding protein 2C (TFAP2C). TFAP2C silencing reversed the protected effects of miR-302a-3p inhibitor on H/R treated AC16 cells. We further established TFAP2C combined to dual-specificity phosphatase 5 (DUSP5) promoter and activated DUSP5. TFAP2C upregulation suppressed H/R-stimulated autophagy and apoptosis through upregulating DUSP5. Overexpressed PART1 reduced myocardial infarction area and attenuated MIRI in mice. Conclusion: PART1 improved the autophagy and apoptosis in H/R-exposed AC16 cells through miR-302a-3p/TFAP2C/DUSP5 axis, which might provide novel targets for MIRI treatment.

억새 EST 정보 유래 전사요소 WRKY의 난지형 잔디의 저온 발현 반응성 (Miscanthus EST-originated Transcription Factor WRKY Expression in Response to Low Temperature in Warm-season Turfgrasses)

  • 정성진;최영인;이긍주
    • Weed & Turfgrass Science
    • /
    • 제2권4호
    • /
    • pp.368-375
    • /
    • 2013
  • 국내에 자생하는 참억새(M. sinensis)와 물억새(M. sacchariflorus)의 잎과 지하경 조직 EST로부터 유전자의 전사를 조절하는 전사요소 탐색하여 저온에 반응하는 유전자를 분리하고 난지형 잔디에서 저온 반응의 차이를 알아보기 위하여 본 연구를 실시하였다. 분석 결과 탐색된 전사조절 요소의 종류는 총 50 종류로 나타났고, 그 중 WRKY family에 속하는 EST 절편이 226개로 가장 많이 발견되었다(9.6%). 그 중 억새 WRKY family를 기능이 밝혀진 다른 작물의 WRKY 유전자들과 비교 검색한 결과 약 80개의 억새 isotig가 저온에 반응하여 발현이 유도 또는 억제되는 것으로 나타났다. 그 중 애기장대와 벼에서 저온 처리 후 발현이 증가되는 것으로 알려진 억새의 MSIR7180_ WRKY4 유전자를 대상으로 그 발현양상을 조사한 결과 버뮤다그래스는 비교구에서와 비슷하게 처리기간 동안 높은 유전자의 발현을 보였고, 금잔디(Z. matrella)간의 교배를 통해 얻어진 세밀 품종은 처리기간 내내 발현이 미약하였다. St. Augustinegrass는 3일 동안은 비교구와 큰 차이가 없다가 5일째부터 발현이 증가하였고, Seashore paspalum은 처리 초기에 발현이 높다가 처리가 진행되면서 약해지는 경향을 나타냈다. 이 결과로 미루어 볼 때 버뮤다그래스와 St. Augustine grass는 저온 반응성이 신속하여 휴면을 준비하지만 금잔디와 Seashore paspalum은 휴면 돌입이 늦어 녹색이 상대적으로 늦게까지 유지되는 것으로 판단되어 저온 적응을 위한 또 다른 환경요인의 작용이 있을 것으로 여겨진다. 녹색 기간이 길고 내한성이 높은 품종의 개발을 위해서는 더 많은 유전자의 종합적인 고찰과 판단이 요구된다.

Identification of Potential DREB2C Targets in Arabidopsis thaliana Plants Overexpressing DREB2C Using Proteomic Analysis

  • Lee, Kyunghee;Han, Ki Soo;Kwon, Young Sang;Lee, Jung Han;Kim, Sun Ho;Chung, Woo Sik;Kim, Yujung;Chun, Sung-Sik;Kim, Hee Kyu;Bae, Dong-Won
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.383-388
    • /
    • 2009
  • The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature ($22^{\circ}C$), but could not detect any differences between the proteomes of wild-type and 35S: DREB2C plants. The transcript level of DREB2C in 35S: DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.