DOI QR코드

DOI QR Code

Ectopic Expression of a Cold-Responsive OsAsr1 cDNA Gives Enhanced Cold Tolerance in Transgenic Rice Plants

  • Kim, Soo-Jin (Department of Life Science, Sogang University) ;
  • Lee, Sang-Choon (Department of Life Science, Sogang University) ;
  • Hong, Soon Kwan (Department of Life Science, Sogang University) ;
  • An, Kyungsook (National Research Laboratory of Plant Functional Genomics, Department of Life Science, Pohang University of Science and Technology) ;
  • An, Gynheung (National Research Laboratory of Plant Functional Genomics, Department of Life Science, Pohang University of Science and Technology) ;
  • Kim, Seong-Ryong (Department of Life Science, Sogang University)
  • Received : 2008.12.31
  • Accepted : 2009.02.16
  • Published : 2009.04.30

Abstract

The OsAsr1 cDNA clone was isolated from a cDNA library prepared from developing seed coats of rice (Oryza sativa L.). Low-temperature stress increased mRNA levels of OsAsr1 in both vegetative and reproductive organs. In situ analysis showed that OsAsr1 transcript was preferentially accumulated in the leaf mesophyll tissues and parenchyma cells of the palea and lemma. For transgenic rice plants that over-expressed full-length OsAsr1 cDNA in the sense orientation, the Fv/Fm values for photosynthetic efficiency were about 2-fold higher than those of wild type-segregating plants after a 24-h cold treatment. Seedlings exposed to prolonged low temperatures were more tolerant of cold stress, as demonstrated during wilting and regrowth tests. Interestingly, OsAsr1 was highly expressed in transgenic rice plants expressing the C-repeat/dehyhdration responsive element binding factor 1 (CBF1), suggesting the regulation of OsAsr1 by CBF1. Taken together, we suggest that OsAsr1 gene play an important role during temperature stress, and that this gene can be used for generating plants with enhanced cold tolerance.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Rural Development Administration

References

  1. Altschul, S.F., Madden, T.L., Schafler, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids ResK 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. An, G., Ebert, P.R., Mitra, A., and Ha, S.B. (1988). Binary vectors. In Plant Molecular Biology Manual. S.B., Gelvin, and R.A., Schilperoort, eds., The Netherlands. pp. A3 1-19, (Dordrecht, The Netherlands; Kluwer Academic Publishers), pp. A3 1-19
  3. Boothe, J.G., Sonnichsen, F.D., de Beus, M.D., and Johnson-Flanagan, A.M. (1997). Purification, characterization, and structural analysis of a plant low-temperature-induced protein. Plant Physiol. 113, 367-376 https://doi.org/10.1104/pp.113.2.367
  4. Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., and Atanassova, R. (2003). A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15, 2165-2180 https://doi.org/10.1105/tpc.013854
  5. Chandler, P.M., and Robertson, M. (1994). Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 113-141 https://doi.org/10.1146/annurev.pp.45.060194.000553
  6. Chang, S., Puryear, J.D., Dias, M.A.D.L., Funkhouser, E.A., Newton, R.J., and Cairney, J. (1996). Gene expression under water deficit in loblolly pine (Pinus taeda L.): isolation and characterization of cDNA clones. Physiol. Plant 97, 139-148 https://doi.org/10.1111/j.1399-3054.1996.tb00490.x
  7. Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12, 444-451 https://doi.org/10.1016/j.tplants.2007.07.002
  8. Christensen, A.H., Sharrock, R.A., and Quail, P.H. (1992). Maize polyubiquitin gene: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. BiolK 18, 675-689 https://doi.org/10.1007/BF00020010
  9. De Datta, S.K. (1981). The climatic environment and its effects on rice production. In Principles and Practices of Rice Production, S.K. De Datta, ed., (Chichester, UK: John Wiley & Sons), pp. 9-40
  10. Dure, L. 3rd. (1993). A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3, 363-369 https://doi.org/10.1046/j.1365-313X.1993.t01-18-00999.x
  11. Frankel, N., Carrari, F., Hasson, E., and Iusem, N.D. (2006). Evolutionary history of the Asr gene family. Gene 378, 74-83 https://doi.org/10.1016/j.gene.2006.05.010
  12. Furumoto, T., Hata, S., and Izui, K. (2000). Isolation and characterization of cDNAs for differentially accumulated transcripts between mesophyll cells and bundle sheath strands of maize leaves. Plant Cell Physiol. 41, 1200-1209 https://doi.org/10.1093/pcp/pcd047
  13. Genty, B., Briantais, J.M., and Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87-92 https://doi.org/10.1016/S0304-4165(89)80016-9
  14. Gibson, S., Arondel, V., Iba, K., and Somerville, C. (1994). Cloning of a temperature-regulated gene encoding a chloroplast omega-3-desaturase from Arabidopsis thaliana. Plant Physiol. 106, 1615-1621 https://doi.org/10.1104/pp.106.4.1615
  15. Gilmour, S.J., Artus, N.N., and Thomashow, M.F. (1992). cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18, 13-21 https://doi.org/10.1007/BF00018452
  16. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854-1865 https://doi.org/10.1104/pp.124.4.1854
  17. Goldgur, Y., Rom, S., Ghirlando, R., Shkolnik, D., Shadrin, N., Konrad, Z., and Bar-Zvi, D. (2007). Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state. Plant Physiol. 143, 617-628 https://doi.org/10.1104/pp.106.092965
  18. Guy, C. (1999). Molecular responses of plants to cold shock and cold acclimation. J. Mol. Microbiol. Biotechnol. 1, 231-242
  19. Hagit, A.Z., Pablo, A.S., and Dudy, B.Z. (1995). Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci. 110, 205-213 https://doi.org/10.1016/0168-9452(95)94515-K
  20. Hiilovaara-Teijo, M., Hannukkala, A., Griffith, M., Yu, X.M., and Pihakaski-Maunsbach, K. (1999). Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity. Plant Physiol. 121, 665-74 https://doi.org/10.1104/pp.121.2.665
  21. Hong, S.T., Chung, J.E., An, G., and Kim, S.R. (1998). Analysis of 176 expressed sequence tags generated from cDNA clones of hot pepper by single-pass sequencing. J. Plant Biol. 41, 116-124 https://doi.org/10.1007/BF03030398
  22. Hong, S.H., Kim, I.J., Yang, D.C., and Chung, W.I. (2002). Characterization of an abscisic acid responsive gene homologue from Cucumis melo. J. Exp. Bot. 53, 2271-2272 https://doi.org/10.1093/jxb/erf075
  23. Houde, M., Dhindsa, R.S., and Sarhan, F. (1992). A molecular marker to select for freezing tolerance in Gramineae. Mol. Gen. Genet. 234, 43-48
  24. Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., and Shinozaki, K. (1997). Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol. Biol. 33, 857-865 https://doi.org/10.1023/A:1005702408601
  25. Iusem, N.D., Bartholomew, D.M., Hitz, W.D., and Scolnik, P.A. (1993). Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol. 102, 1353-1354 https://doi.org/10.1104/pp.102.4.1353
  26. Jeanneau, M., Gerentes, D., Foueillassar, X., Aivy, M., Vidal, J., Toppan, A., and Perez, P. (2002). Improvement of drought tolerance in maize: towards the functional validation of the ZmAsr1 gene and increase of water use efficiency by overexpressing C4-PEPC. Biochimie 84, 1127-1135 https://doi.org/10.1016/S0300-9084(02)00024-X
  27. Jeon, J.S., Chung, Y.Y., Lee, S., Yi, G.H., Oh, B.G., and An, G. (1999). Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol. Biol. PV, 35-44 https://doi.org/10.1023/A:1006157603096
  28. Joachim, V.B., Francesco, S., and Christiane, G. (1994). Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol. 104, 445-452 https://doi.org/10.1104/pp.104.2.445
  29. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291 https://doi.org/10.1038/7036
  30. Kim, S.-R., Lee, S., Kang, H.-G., Jeon, J.-S., Kim, K.-M., and An, G. (2003). A complete sequence of the pGA1611 binary vector. J. Plant Biol. 46, 211-214 https://doi.org/10.1007/BF03030451
  31. Kirsten, R., Jaglo-Ottosen, S.J., Gilmour, D.G., Zarka, O.S., Michael, F., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106 https://doi.org/10.1126/science.280.5360.104
  32. Kishor, P.B.K., Hong, Z., Miao, G.H., Hu, C.A.A., and Verma, D.P.S. (1995). Overexpression of delta-pyrolline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387-1394 https://doi.org/10.1104/pp.108.4.1387
  33. Krause, G.H. (1994). Photoinhibition of photosynthesis: an evaluation of damaging and protective mechanism. Physiol. Plant. 74, 566-574
  34. Kurkela, S., and Borg-Franck, M. (1992). Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19, 689-692 https://doi.org/10.1007/BF00026794
  35. Lee, T.M., Lur, H.S., and Chu, C. (1993). Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant Cell Environ. 16, 481-490 https://doi.org/10.1111/j.1365-3040.1993.tb00895.x
  36. Lee, S., Jeon, J.S., Jung, K.H., and An, G. (1999). Binary vectors for efficient transformation of rice. J. Plant Biol. 42, 310-316 https://doi.org/10.1007/BF03030346
  37. Lim, J.N. (1998). Report of a research on new crop cultivar development. Rural Development Administration, Korea. pp. 191-193
  38. Lin, C., and Thomashow, M.F. (1992). DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol. 99, 519-525 https://doi.org/10.1104/pp.99.2.519
  39. MaNeil, S.D., Nuccio, M.L., and Hanson, A.D. (1999). Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 120, 945-949 https://doi.org/10.1104/pp.120.4.945
  40. Maskin, L., Gubesblat, G.E., Moreno, J.E., Carrari, F. O., Frankel, N., Sambade, A., Rossi, M., and Iusem, N.D. (2001). Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Palnt Sci. 161, 739-746 https://doi.org/10.1016/S0168-9452(01)00464-2
  41. Maskin, L., Frankel, N., Gudesblat, G., Demergasso, M.J., Pietrasanta, L.I., and Iusem, N.D. (2007). Dimerization and DNAbinding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss. Biochem. Biophys. Res. Commun. 352, 831-835 https://doi.org/10.1016/j.bbrc.2006.11.115
  42. Mizoguchi, T., Hayashida, N., Yamaguchi-Shinozaki, K., Kamada, H., and Shinozaki, K. (1993). ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett. 336, 440-444 https://doi.org/10.1016/0014-5793(93)80852-L
  43. Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Verzina, L.P., and Dhindsa, R.S. (1993). A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol. 102, 873-879 https://doi.org/10.1104/pp.102.3.873
  44. Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-495 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  45. Nicholas, K.B., and Nicholas, H.B. (1997). GeneDoc: analysis and visualization of genetic variation. (http://www.cris.com/~Ketchup/ genedoc.html)
  46. Nishiyama, I. (1984). Climatic influence of pollen formation and fertilization. In S N.T., Tsunoda; ed., Biology of Rice, Jpn. Sci.Soc. Press, Tokyo, pp. 153-171
  47. Nylander, M., Svensson, J., Palva, E.T., and Welin, B.V. (2001). Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45, 263-279 https://doi.org/10.1023/A:1006469128280
  48. Roger, S.O., and Bendich, A.J. (1988). Extraction of DNA from plant tissues. In Plant Molecular Biology Manual, S.B. Gelvin, and R.A. Schilperoort, eds., (Dordrecht, The Netherlands; Kluwer Academic Publishers), pp. A6 1-10
  49. Rossi, M., and Iusem, N.D. (1994). Tomato (Lycopersicon esculentum) genomic clone homologous to a gene encoding an abscisic acid-induced protein. Plant Physiol. 104, 1073-1074 https://doi.org/10.1104/pp.104.3.1073
  50. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000). Over-expression of a single $Ca^{2+}$-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319-327 https://doi.org/10.1046/j.1365-313x.2000.00787.x
  51. Schreiber, U., Bilger, W., and Neubauer, C. (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecological Studies, Vol. 110, Ecop
  52. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. (2001). Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61-72 https://doi.org/10.1105/tpc.13.1.61
  53. Shkolnik, D., and Bar-Zvi, D. (2008). Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding. Plant Biotech. J. 6, 368-378 https://doi.org/10.1111/j.1467-7652.2008.00328.x
  54. Silhavy, D., Hutvagnet, G., Barta, E., and Banfalvi, Z. (1995). Isolation and characterization of a water stress-inducible cDNA clone from Solanum chacoence. Plant Mol. Biol. 27, 587-595 https://doi.org/10.1007/BF00019324
  55. Steponkus, P.L. (1984). Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35, 543-584 https://doi.org/10.1146/annurev.pp.35.060184.002551
  56. Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035-1040 https://doi.org/10.1073/pnas.94.3.1035
  57. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29, 417-426 https://doi.org/10.1046/j.0960-7412.2001.01227.x
  58. Thomashow, M.F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571-599 https://doi.org/10.1146/annurev.arplant.50.1.571
  59. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive hysiology of photosynthesis, E.D. Schulze, and M.M. Caldwell, eds., (Beriln, Germany; Springer Verlag), pp. 49-70
  60. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 https://doi.org/10.1126/science.1068037
  61. Vaidyanathan, R., Kuruvilla, S., and Thomas, G. (1999). Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci. 140, 25-36 https://doi.org/10.1016/S0168-9452(98)00194-0
  62. Wang, C.S., Liau, Y.E., Huang, J.C., Wu, T.D., Su, C.C., and Lin, C.H. (1998). Characterization of a desiccation related protein in lily pollen during development and stress. Plant Cell Physiol. 39, 1307-1314 https://doi.org/10.1093/oxfordjournals.pcp.a029335

Cited by

  1. Constitutive Overexpression of the Calcium Sensor CBL5 Confers Osmotic or Drought Stress Tolerance in Arabidopsis vol.29, pp.2, 2009, https://doi.org/10.1007/s10059-010-0025-z
  2. Temperature stress and plant sexual reproduction: uncovering the weakest links vol.61, pp.7, 2010, https://doi.org/10.1093/jxb/erq053
  3. The rice ASR5 protein : A putative role in the response to aluminum photosynthesis disturbance vol.7, pp.10, 2012, https://doi.org/10.4161/psb.21662
  4. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities vol.35, pp.5, 2009, https://doi.org/10.1007/s10059-013-0036-7
  5. Two poplar calcineurin B-like proteins confer enhanced tolerance to abiotic stresses in transgenic Arabidopsis thaliana vol.57, pp.1, 2009, https://doi.org/10.1007/s10535-012-0251-7
  6. Rice ASR1 has Function in Abiotic Stress Tolerance during Early Growth Stages of Rice vol.56, pp.3, 2013, https://doi.org/10.1007/s13765-013-3060-6
  7. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco vol.36, pp.8, 2009, https://doi.org/10.1111/pce.12074
  8. Avoiding damage and achieving cold tolerance in rice plants vol.2, pp.2, 2009, https://doi.org/10.1002/fes3.25
  9. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci vol.7, pp.None, 2009, https://doi.org/10.1186/s12284-014-0024-3
  10. Twenty years of research on Asr (ABA-stress-ripening) genes and proteins vol.239, pp.5, 2014, https://doi.org/10.1007/s00425-014-2039-9
  11. Tomato ABSCISIC ACID STRESS RIPENING ( ASR ) Gene Family Revisited vol.9, pp.10, 2009, https://doi.org/10.1371/journal.pone.0107117
  12. Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance vol.35, pp.1, 2016, https://doi.org/10.1007/s00299-015-1873-y
  13. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn vol.43, pp.8, 2009, https://doi.org/10.1007/s11033-016-4013-z
  14. Comparative analysis of gene expression in response to cold stress in diverse rice genotypes vol.471, pp.1, 2009, https://doi.org/10.1016/j.bbrc.2016.02.004
  15. Identification and physiological characterization of two sister lines of indica rice (Oryza sativa L.) with contrasting levels of cold tolerance vol.96, pp.2, 2009, https://doi.org/10.1139/cjps-2015-0067
  16. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H 2 O 2 signalling in rice vol.15, pp.2, 2009, https://doi.org/10.1111/pbi.12601
  17. Deep RNAseq indicates protective mechanisms of cold-tolerant indica rice plants during early vegetative stage vol.37, pp.2, 2009, https://doi.org/10.1007/s00299-017-2234-9
  18. Functional Analysis of Abscisic Acid-Stress Ripening Transcription Factor in Prunus persica f. atropurpurea vol.37, pp.1, 2009, https://doi.org/10.1007/s00344-017-9695-5
  19. Differentially expressed ZmASR genes associated with chilling tolerance in maize (Zea mays) varieties vol.45, pp.12, 2009, https://doi.org/10.1071/fp17356
  20. Near-Isogenic Lines of Japonica Rice Revealed New QTLs for Cold Tolerance at Booting Stage vol.9, pp.1, 2019, https://doi.org/10.3390/agronomy9010040
  21. Over-expression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon vol.38, pp.9, 2009, https://doi.org/10.1007/s00299-019-02429-7
  22. Constitutive and Cold Acclimation-Regulated Protein Expression Profiles of Scots Pine Seedlings Reveal Potential for Adaptive Capacity of Geographically Distant Populations vol.11, pp.1, 2009, https://doi.org/10.3390/f11010089
  23. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening vol.21, pp.4, 2020, https://doi.org/10.3390/ijms21041390
  24. Spring Freeze Damage of Pecan Bloom: A Review vol.6, pp.4, 2009, https://doi.org/10.3390/horticulturae6040082
  25. Distinct Preflowering Drought Tolerance Strategies of Sorghum bicolor Genotype RTx430 Revealed by Subcellular Protein Profiling vol.21, pp.24, 2009, https://doi.org/10.3390/ijms21249706
  26. Genome-Wide Identification and Comparative Analysis of the ASR Gene Family in the Rosaceae and Expression Analysis of PbrASRs During Fruit Development vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.792250
  27. TaASR1‐D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat vol.19, pp.8, 2009, https://doi.org/10.1111/pbi.13572
  28. Chilling tolerance in rice: Past and present vol.268, pp.None, 2022, https://doi.org/10.1016/j.jplph.2021.153576