• Title/Summary/Keyword: Transcript

Search Result 674, Processing Time 0.041 seconds

Regulation of Ferritin Synthesis by Iron-responsive Element in 5'-Untranslated Region (5'-Untranslated Region에 존재하는 Iron Responsive Element에 의한 Ferritin 합성조절)

  • Chung, In-Sik;Lee, Jung-Lim;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.224-227
    • /
    • 1998
  • The expression of ferritin involved in iron metabolism is regulated at the translational level by the interaction of iron regulatory protein with iron-responsive element(IRE) in the 5'-untranslated region of ferritin transcript. To identify the role of structural element utilized for translational regulation of ferritin, we studied the effects of mutations in the ferritin IRE by measuring IRP binding activity and translational activity. Our data suggest that the cytosine at bulged position of IRE within ferritin is important for the formation of RNA secondary structure involved in translational regulation.

  • PDF

Abundance and expression of denitrifying genes (narG, nirS, norB, and nosZ) in sediments of wastewater stabilizing constructed wetlands

  • Chon, Kyongmi;Cho, Jaeweon
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • As expected, the expression of denitrifying genes in a Typha wetland (relatively stagnant compared to other ponds), showing higher nitrogen removal efficiency in summer, was affected by temperature. The abundance and gene transcripts of nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductase (norB), and nitrous oxide reductase (nosZ) genes in seasonal sediment samples taken from the Acorus and Typha ponds of free surface flow constructed wetlands were investigated using quantitative polymerase chain reaction (Q-PCR) and quantitative reverse transcription PCR (Q-RT-PCR). Denitrifying gene copy numbers ($10^5-10^8$ genes $g^{-1}$ sediment) were found to be higher than transcript numbers-($10^3-10^7$ transcripts $g^{-1}$ sediment) of the Acorus and Typha ponds, in both seasons. Transcript numbers of the four functional genes were significantly higher for Typha sediments, in the warm than in the cold season, potentially indicating greater bacterial activity, during the relatively warm season than the cold season. In contrast, copy numbers and expression of denitrifying genes of Acorus did not provide a strong correlation between the different seasons.

Lysophosphatidic Acid-Induced TWIST1 and Slug Expression in Oral Cancer Cell Invasion

  • Cho, Kyung Hwa
    • Journal of dental hygiene science
    • /
    • v.17 no.5
    • /
    • pp.433-438
    • /
    • 2017
  • Relative to its incidence, oral cancer has serious negative social effects. The exact causes of oral cancer have not been clarified, but many studies have implicated smoking and drinking. However, the fundamental mechanism of oral cancer causation has yet to be elucidated. Lysophosphatidic acid (LPA) augments epithelial mesenchymal transition (EMT) and development of various cancer cells. However, a detailed mechanistic explanation for LPA-induced EMT and the effects of EMT-promoting conditions on oral squamous cell carcinoma development remain elusive. In the present study, a quantitative reverse transcription polymerase chain reaction was used to analyze TWIST1, Slug, E-cadherin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcript expression. Immunoblotting was used to analyze TWIST1, Slug, E-cadherin, and GAPDH protein expression. siRNAs were used to silence TWIST1 and Slug transcript expression. A matrigel-coated in vitro invasion insert was used to analyze oral cancer cell invasion. The results of the present study show that the expression levels of TWIST1 and Slug, which are EMT factors, were increased by LPA treatment in YD-10B oral squamous cell carcinoma. Conversely, E-cadherin expression was significantly reduced. In addition, transfection of the cells with TWIST1 and Slug siRNA strongly inhibited LPA-induced oral cancer cell invasion. The present study shows that TWIST1 and Slug mediate LPA-induced oral cancer cell EMT and invasiveness. The present study confirmed the mechanism by which LPA promotes oral cancer cell development, with TWIST1 and Slug providing novel biomarkers and promising therapeutic targets for oral cancer cell development.

Screening of Gravity Inducible cDNAs in Rice(Oryza sativa L.) Cultured Cell (벼 (Oryza sativa L.)배양세포의 고중력유도성 cDNA의 탐색)

  • ;;Kiyoharu OONO
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.111-115
    • /
    • 1994
  • Two different gravity specific cDNA, namely, GSC 13 and GSC 124 with length of 1.34 and 0.67 kilobase pairs, and transcripts of 2.0 and 1.9 kilobase pairs, respectively. were isolated by differential screening and northern hybridization of the total RNA isolated from treated and untreated cultured cells showed that maximum levels of trannscripts were achieved after 4 h of gravity stress at 450, 000 x g for both, GSC 13 and GSC 124, suggesting that these mRNA could be expressed and translated into polyeptites related to the cell to extream gravity stress.

  • PDF

Identification and characterization of a rice blast fungal elicitor-inducible Oshin1 gene

  • Kim, Cha-Young;Lee, Sung-Ho
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • In order to understand the molecular interactions that occur between rice and the rice blast fungus during infection, we previously identified a number of rice blast fungal elicitor-responsive genes from rice (Oryza sativa cv. Milyang 117). Here, we report the cloning and characterization of the rice fungal elicitor-inducible gene Oshin1 (GenBank Accession Number AF039532). Sequence analysis revealed that the Oshin1 cDNA is 1067 bp long and contains an open reading frame encoding 205 amino acid residues. The Oshin1 gene shows considerable sequence similarity to the tobacco hin1 and hin2 genes. The predicted Oshin1 protein has a cysteine-rich domain at the N-terminus and is rich in leucine, serine, and alanine residues. Southern blot analysis suggests that Oshin1 gene is a member of a small gene family in the rice genome. To examine the expression of Oshin1, Northern blot analysis was conducted. Expression of the Oshin1 transcript is rapidly induced in suspension-cultured rice cells treated with fungal elicitor, salicylic acid or hydrogen peroxide. In addition, Oshin1 transcript levels are rapidly increased by treatment with $Ca^{2+}$/A23187. The expression of Oshin1 was also elevated in 3-week old leaf tissues upon ethephon application or fungal elicitor treatment. Our results suggest that the Oshin1 gene is involved in plant defense responses to environmental stresses.

Molecular Characterization of a Chinese cabbage cDNA, C-DH, Predominantly Induced by Water-Deficit Stress and Plant Hormone, ABA (수분부족 및 식물호르몬, ABA에 의하여 발현이 유도되는 배추의 C-DH cDNA에 대한 분자적 특성)

  • 정나은;이균오;홍창휘;정배교;박정동;이상열
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 1998
  • A cDNA encoding desiccation-related protein was isolated from a flower bud cDNA library of Chinese cabbage (C-DH) and its nucleotide sequence was characterized. It contains 679 bp nucleotides with 501 bp open reading frame. The amino acid sequence of the putative protein showed the highest amino acid sequence homology (79 % identity) to dehydrin protein in Gossypium hirsutum. Also, the C-DH shares 48-52% amino acid sequence identity with the other typical dehydrin proteins in plant cells. When the amino acid sequence of their proteins were aligned, several peptide motifs were well conserved, of which function has to be solved. Particularly the C-DH contains 15 additional amino acids at its N-terminus. Genomic Southern blot analysis using the coding region of C-DH showed that the C-DH consists of a single copy gene in Chinese cabbage genome. The C-DH mRNA, whose transcript size is 0.7 kb, was expressed with a tissue-specific manner. It was highly expressed in seed, flower buds and low expression as detected in root, stem or leaf tissues of Chinese cabbage. And the transcript level of C-DH was significantly induced by the treatment of plant hormone, abscisic acid and water-deficit conditions.

  • PDF

Structural Analysis and Transcriptional Regulation of the Chloroplast psbC Gene from Panax ginseng

  • Yoo, Ki-Yeol;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.129-133
    • /
    • 2005
  • The psbC gene, encoding the intrinsic chlorophyll-binding protein of CP43, one of the PS core complex polypeptides, was cloned from the Panax ginseng chloroplast, which is composed of 1,422 nucleotides and the overall nucleotide sequence shows more than 84% identity to those of eukaryotic photosynthetic organisms. The predicted topology of CP43, based on hydropathy analysis, includes six membrane-spanning ${\alpha}-helices$ resulting in three lumenal and four stromal loops. The putative translation start codon for the psbC gene is located at 48 nucleotides upstream from the stop codon of the psbD gene whose product is also a component of the PSII reaction center, implying that the promoter of the psbC gene is possibly located in the middle of the structural gene of the psbD gene. Northern blot analysis of the in vivo accumulation of the psbC transcript from the plants grown under the various growth light intensities (5%, 10%, 20%, and 100%) of daylight indicated that the steady-state level of the psbC transcript was not significantly affected by light intensity.

  • PDF

SmartPhone Recording System for Mobile Office Environment (모바일 오피스 환경을 위한 스마트폰 레코딩 시스템)

  • Kang, Euiseon;Kim, Jeonghun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, in spite of fast development of smartphone, recording technology has saved, listened and searched in server based on PSTN and wired network. We introduce a mobile transcript recording system for mobile office environment. All calls using smartphone are automatically saved on memory in mobile device with this system. Thereafter, recording files are encrypted and uploaded to recording server by user authority. Beside recording data in database on web server is saved and managed efficiently and economically through web application. This system is able to be used in legal corroborative facts and the prevention of crime such as voice phishing.

Long Non-coding RNA GAS5 Functions as a Tumor Suppressor in Renal Cell Carcinoma

  • Qiao, Hui-Ping;Gao, Wei-Shi;Huo, Jian-Xin;Yang, Zhan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1077-1082
    • /
    • 2013
  • Background: Renal cell carcinoma (RCC) is a malignancy with a poor prognosis. We aimed to explore whether the expression of Long Non-Coding RNA (LncRNA) growth arrest-specific transcript 5 (GAS5) is associated with RCC genesis. Methods: We selected twelve clinical samples diagnosed for renal clear cell carcinoma and found that the LncRNA GAS5 transcript levels were significantly reduced relative to those in adjacent unaffected normal renal tissues. Results: In addition, expression of GAS5 was lower in the RCC cell line A498 than that in normal renal cell line HK-2. Furthermore, using functional expression cloning, we found that overexpression of GAS5 in A498 cells inhibited cell proliferation, induced cell apoptosis and arrested cell cycling. At the same time, the migration and invasion potential of A498 cells were inhibited compared to control groups. Conclusion: Our study provided the first evidence that a decrease in GAS5 expression is associated with RCC genesis and progression and overexpression of GAS5 can act as a tumor suppressor for RCC, providing a potential attractive therapeutic approach for this malignancy.

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.