• Title/Summary/Keyword: Trametes

Search Result 132, Processing Time 0.022 seconds

Effect of Nutrients on the Production of Extracellular Enzymes for Decolorization of Reactive Blue 19 and Reactive Black 5

  • Lee Yu-Ri;Park Chul-Hwan;Lee Byung-Hwan;Han Eun-Jung;Kim Tak-Hyun;Lee Jin-Won;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.226-231
    • /
    • 2006
  • Several white-rot fungi are able to produce extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase. In order to enhance the production of laccase and MnP using Trametes versicolor KCTC 16781 in suspension culture, the effects of major medium ingredients, such as carbon and nitrogen sources, on the production of the enzymes were investigated. The decolorization mechanism in terms of biodegradation and biosorption was also investigated. Among the carbon sources used, glucose showed the highest potential for the production of laccase and MnP. Ammonium tartrate was a good nitrogen source for the enzyme production. No significant difference in the laccase production was observed, when glucose concentration was varied between 5 g/l and 30 g/l. As the concentration of nitrogen source increased, a lower MnP activity was observed. The optimal C/N ratio was 25 for the production of laccase and MnP. When the concentrations of glucose and ammonium tartrate were simultaneously increased, the laccase and MnP activities increased dramatically. The maximum laccase and MnP activities were 33.7 U/ml at 72 h and 475 U/ml at 96 h, respectively, in the optimal condition. In this condition, over 90% decolorization efficiency was observed.

Decolorization of Blue-Stain by Dual Culture of Blue Staining and Basidial Fungi

  • Pashenova, Natalia;Lee, Jong-Kyu;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.65-71
    • /
    • 2005
  • This study was performed to understand the interaction between Ophiostomataceae and basidiomycetes fungi during cultures, and whether the basidiomycetes fungi inhibit the growth and decolorize dark pigments of blue staining fungi. The conjoint cultivation was studied on 2% malt extract agar. The ability of basidial cultures to decolorize dark pigments of ophiostomatoid fungi was the main characteristics estimated during this study. More than half of basidial cultures were characterized by deadlock interaction with blue staining fungi. In the dual cultures, where basidial partners were presented by Agaricus bisporus(64), Laetiporus sulphureus(L01/89), Trametes versicolor(09) and unknown fungus(02), antagonism was found at the phase of primary contact of colonies. Replacement interaction resulted usually in decreasing dark colour of substrate was observed for 11 basidial cultures that were belonging mainly to white-rot fungi. Among them Abortiporus biennis(123), Antrodiella hoehnelii(S28/91), Bjerkandera fumosa (137), and Gleophyllum odoratum(124) were characterized by the absence of deadlock-phase: they began to grow over dark colonies of their partners just after primary contact. Basidiomycetes did not affect strongly the pigments of Ceratocystis spp. and Leptographium sibirica isolates, but completely decolorized colonies of Ophiostoma ips and to a smaller degree Ophiostoma minus. Antrodiella hoehnelii(S28/91), Bjerkandera fumosa(137), Gleophyllum odoratum(124) and Trametes versicolor(B18/91) cultures were found to be the most active in decreasing dark color of blue staining fungi colonies. The cultures were recommended for further development as agents of biopulping of wood chips and bio-control of blue stain in woods.

Immobilization of Fungal Laccase on Keratin-Coated Soil and Glass Matrices

  • Ginalska, G.;Lobarzewski, J.;Cho, Nam-Seok;Choi, T.H.;Ohga, S.;Jaszek, M.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.112-122
    • /
    • 2001
  • Laccase enzymes from Cerrena unicolor and Trametes versicolor were immobilized on the activated glass beads (CPG), silica gel (SG) and soil (SL). The heterogeneous matrices were activated by ${\gamma}$-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA), and their surfaces were coated by keratin (KER) on activated or non-activated CPG, SG and SL. The laccase activities were tested in the aqueous solution for the native and immobilized preparations using different pH and temperature conditions. By keratin coating on supports, in the cases of CPG-KER and SL-KER, the immobilization yield was increased from about 80% to 90%. Moreover, much less protein was immobilized in keratin coated matrices than in inorganic ones alone (e.g. on CPG-KER 57.6%, whereas on CPG alone 80.6%). Laccase immobilization on keratin coated inorganic matrices was generally more effective than that of non-coated matrices. Concerned to pH dependency, the optima pH for immobilized laccases generally shifted towards to higher values, 5.5-5.8 and even 5.9 in the case of keratin for C. unicolor and from 5.3 to 5.7 for T. versicolor, respectively, and decreased less gradually both in acidic and alkaline regions. The immobilized laccase was more stable against thermal denaturation. This seems particularly true at $75^{\circ}C$ in the case of C. unicolor, where the activity of immobilized enzyme is > 50% higher than that of the free enzyme. For T. versicolor the respective values were $65^{\circ}C$, and 50%.

  • PDF

Biodegradation of Pentachlorophenol by Various White Rot Fungi (수질분해균(水質分解菌)에 의한 Pentachlorophenol의 미생물분해(微生物分解))

  • Choi, In-Gyu;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.53-62
    • /
    • 1998
  • In this research, 7 species of white rot fungi were used for determining the resistance against pentachlorophenol (PCP). Three fungi with good PCP resistance were selected for evaluating the biodegradability, and biodegradation mechanism by HPLC and GC/MS spectrometry. Among 7 fungi, there were significant differences on PCP resistance on 4 different PCP concentrations. In the concentrations of 50 and 100ppm ($\mu$g of PCP per g of 2% malt extract agar), most fungi were easily able to grow, and well suited to newly PCP-added condition, but in that of more than 250ppm, the mycelia growths of Ganoderma lucidum 20435, G. lucidum 20432, Pleurotus ostreatus, and Daldinia concentrica were significantly inhibited or even stopped by the addition of PCP to the culture. However, Trametes versicolor, Phanerochaete chrysosporium, and Inonotus cuticularis still kept growing at 250ppm, indicating the potential utilization of wood rot fungi to high concentrated PCP biodegradation. Particularly, P. chrysosporium even showed very rapid growth rate at more than 500ppm of PCP concentration. Three selected fungi based on the above results showed an excellent biodegradability against PCP. P. chrysosporium degraded PCP up to 84% on the first day of incubation, and during 7 days, most of added PCP were degraded. T. versicolor also showed more than 90% of biodegradability at 7th day, and even though the initial stage of degradation was very slow, I. cuticularis has been approached to 90% at 21 st day after incubation with dense growing pattern of mycelia. Therefore, the PCP biodegradability was definitely dependent on the rapid suitability of fungi to newly PCP-added condition. In addition, the PCP biodegradation by filtrates of P. chrysosporium, T. versicolor, and I. cuticularis was very minimal or limited, suggesting that the extracellular enzyme system may be not so significantly related to the PCP biodegradation. Among the biodegradation metabolites of PCP, the most abundant one was pentachloroanisole which resulted in a little weaker toxicity than PCP, and others were tetrachlorophenol, tetrachloro-hydroquinone, benzoic acid, and salicylic acid, suggesting that PCP may be biodegraded by several sequential reactions such as methylation, radical-induced oxidation, dechlorination, and hydroxylation.

  • PDF

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

Diversity of Wood-Inhabiting Polyporoid and Corticioid Fungi in Odaesan National Park, Korea

  • Jang, Yeongseon;Jang, Seokyoon;Lee, Jaejung;Lee, Hanbyul;Lim, Young Woon;Kim, Changmu;Kim, Jae-Jin
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.217-236
    • /
    • 2016
  • Polyporoid and corticioid fungi are among the most important wood-decay fungi. Not only do they contribute to nutrient cycling by decomposing wood debris, but they are also valuable sources for natural products. Polyporoid and corticioid wood-inhabiting fungi were investigated in Odaesan National Park. Fruit bodies were collected and identified based on morphological and molecular analyses using 28S and internal transcribed spacer regions of DNA sequences. As a result, a total of 149 species, 69 genera, 22 families, and 11 orders were recognized. Half (74 species) of the species were polypores, and the other half (75 species) were corticioid fungi. Most of the species belonged to Polyporales (92 species) followed by Hymenochaetales (33 species) and Russulales (11 species). At the genus level, a high number of species was observed from Steccherinum, Hyphodontia, Phanerochaete, Postia, and Trametes. Concerning distribution, almost all the species could be found below 1,000 m, and only 20% of the species were observed from above 1,000 m. Stereum subtomentosum, Trametes versicolor, T. hirsuta, T. pubescens, Bjerkandera adusta, and Ganoderma applanatum had wide distribution areas. Deciduous wood was the preferred substrate for the collected species. Sixty-three species were new to this region, and 21 species were new to Korea, of which 17 species were described and illustrated.

Inhibitory Activity of Asarum sieboldii against Wood Rot Fungi on Traditional Paper, Hanji (한지에서 셀룰로오스 분해 미생물에 대한 세신 추출물의 저해 활성)

  • Hong, Jin Young;Kim, Young Hee;Jo, Chang Wook;Lee, Jeong Min;Kim, Su Ji;Jeong, So Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.282-289
    • /
    • 2017
  • Background: To investigate the possibility of using Asarum sieboldii as an environment-friendly fumigant for protecting organic cultural heritages, the inhibitory effect of A. sieboldii extract against wood rot fungi on Hanji was examined. Methods and Results: The physical, optical, and morphological properties of Hanji inoculated with Trametes versicolor and Tyromyces palustris, and exposed to the n-hexane fraction of A. sieboldii extract, were measured. The physical properties were expressed as weight loss, zero-span tensile strength and viscosity and the optical properties were depicted by luminance and chromaticity ($L^*$, $a^*$, and $b^*$). The results showed that, the n-hexane fraction of A. sieboldii extract inhibited the growth of fungi on Hanji, and preserved its condition. At a concentration of 25 mg, the n-hexane fraction of A. sieboldii extract maintained zero-span tensile strength, increased viscosity, and restricted discoloration of Hanji. It also was confirmed that the weight of fungi infested Hanji exposed to the extract did not decrease. Scanning electron microscopic images revealed that the spores and hyphae of T. versicolor and T. palustris were not present on Hanji during treatment with > 25 mg of the n-hexane fraction of A. sieboldii extract. Conclusions: These results indicate that the n-hexane fraction of A. sieboldii extract by virtue of its antifungal effectiveness may help in preserving Korean paper cultural heritages, including Hanji.

Mechanical Properties of Fire-Retardant Treated Wood (내화처리 목재의 기계적 성질)

  • Lee, Hyun-Mi;Kim, Jong-Man;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1-11
    • /
    • 2004
  • This study explored how simultaneous treatment of monoammonium phosphate (MAP) and boric acid for Pinus densiflora and Populus euramericana influenced the properties such as fire resistance, preservation against Trametes versicolor and Tyromyces palustris, and compressive strength of the treated woods. For specific gravity and compressive strength, the treated woods were higher than the non-treated ones. For the analytical features observed by SEM, the cell walls of the non-treated woods were extremely destructed by T. palustris and T. versicolor while the treated ones relatively remained intact. Especially, P euramericana was more readily exposed to the attack of the rot fungi than P. densiflora.

Lignin Degradation of Pine Wood by Unidentified Decay Fungi and Observation by Scanning Electron Microscope (미동정 부후균에 의한 소나무재의 Lignin 분해와 주사전자현미경(SEM)을 이용한 관찰)

  • Park, Heon;Min, Kyeong-Heui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.71-80
    • /
    • 2003
  • The lignin degrading fungi were isolated from decayed woods and fruiting bodies gathered in forest area. Lignin degradation ability was investigated by Klason lignin of microbial treated pine wood. Among selected fungi, CJ-6 had 49.48% Klason lignin loss which was greater than 40.58% shown by Trametes versicolor that it is known as a typical lignin degrading fungus. Also, the biodegradation process and morphological features of degraded pine wood by selected fungi were observed with the scanning electron microscope. At the stage of 20 days incubation, mycelia invasion was observed without any failure of wood structure. At 60 days, wood decay was gone in some degree and one part of tracheid and ray wall was destroyed. At 100 days, tracheid wall was severely destroyed, and distinction between ray cell was difficult as cell wall was decayed much.

Chewable pet treats made from mushroom mycelia (버섯 균사체로 제조된 반려동물용 개 껌)

  • Yong-Hyeon Jeong;Ho-Seong Im;Jin-Hee Song;Hui-Won Heo;Hyun-Jae Shin
    • Journal of Mushroom
    • /
    • v.22 no.1
    • /
    • pp.17-21
    • /
    • 2024
  • Mushroom-based vegan meat has thus far been used as a food for humans instead of pets. However, based on its texture and nutritional content, it is considered suitable for processing into pet treats. In the present study, we developed a prototype dog chew with a sweetening coating added to a fungal mycelium mat obtained by culturing the Basidiomycetous fungus Trametes orientalis. The palatable coating applied to the mycelium mat by plasticizing the mat with glycerol improved the taste and aroma of the existing mat, and the dog consumed it without difficulty. Future improvements may include a softening process to reduce the chewiness level and a procedure to reduce the crude fiber content. Mycelium-mat-based dog chews, manufactured using eco-friendly materials and processes that are not harmful to the environment are expected to enter the market as eco-friendly alternatives to conventional pet treats. Controlling their physical properties require further study.