• Title/Summary/Keyword: Trajectory generation

Search Result 266, Processing Time 0.026 seconds

Detecting and Tracking Nonstationary Objects Through Motion-Hypotheses Generation and Verification (동작 가설 생성과 검증을 통한 이동 물체의 검출 및 추적)

  • 이진호;최형일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.41-53
    • /
    • 1993
  • The tasks which detect and track moving objects, by analyzing dynamic images taken at a constant time interval, are essential in various applications. This paper suggests how to utilize domain-specific knowledge and motional knowledge for detecting and tracking moving objects. That is, The trajectory information of a moving object is to be used for generating hypotheses on expected motion and expected position of moving objects, and the domain-specific knowledge is to be used for verifying the generated hypotheses.

  • PDF

Molecular dynamics simulation of ultra-low energy ion implantation for GSI device technology development (GSI소자 개발을 위한 극 저 에너지 이온 주입에 대한 분자 역학 시뮬레이션)

  • 강정원;손명식;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.18-27
    • /
    • 1998
  • Molecular dynamicsinvestigations of ion implantation considering point defect generation were performed with ion energies in the range of ~1keV, Simulation starts perfect diamond cubic lattice site. Stillinger-Weber potential and ZBL potential were used to calculate forces between atoms. We have simulated slowing-down of ion velocity, ion trajectory and coupled-coing between ion and silicon. We also discussed distribution of point defect using rdial distribution function. We found that interstitial produced by ion bombardment mainly formed interstitial cluster.

  • PDF

Implementation of MATLAB Script for a Vehicle Curve Trajectory Generation in ADAS Simulation (ADAS 시뮬레이션 상 차량 곡선 궤적 생성을 위한 MATLAB 스크립트 구현)

  • Jeonghyun Ryu;Eunbyung Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1129-1130
    • /
    • 2023
  • 본 논문에서는 신규 차량 안전성 평가를 위한 ADAS 시뮬레이션 상에서 곡선 궤적을 효과적으로 생성할 수 있는 MATLAB 스크립트를 구현하였다. 본 연구를 통해 곡선 궤적 좌표를 생성하고 수작업으로 대입하는 과정을 간소화할 수 있으며, 또한 다른 시나리오에서 적용할 곡선 궤적을 편리하게 생성할 수 있을 것으로 기대한다.

Smoothly Connected Path Generation and Time-Scheduling Method for Industrial Robot Applications (산업용로봇 작업을 위한 유연한 연결경로 생성과 시간계획)

  • Lee Won-Il;Ryu Seok-Chang;Cheong Joo-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.671-678
    • /
    • 2006
  • This article proposes a smooth path generation and time scheduling method for general tasks defined by non-smooth path segments in industrial robotic applications. This method utilizes a simple 3rd order polynomial function for smooth interpolation between non-smooth path segments, so that entire task can effectively maintain constant line speed of operation. A predictor-corrector type numerical mapping technique, which correlates time based speed profile to the smoothed path in Cartesian space, is also provided. Finally simulation results show the feasibility of the proposed algorithm.

A Study on the Trends of the FAA's NextGen (FAA의 차세대 항공운항(NexGen) 동향)

  • Kim, You gwang
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2012
  • "The FAA's Next Generation Air Transportation System" is a comprehensive overhaul of U.S National Airspace System to make air travel more convenient and dependable, while ensuring the flight is as safe, secure and hassle-free as possible. At its most basic level, NextGen represents an evolution from a ground-based system of air traffic control to a satellite-based system of air traffic management. This evolution is vital to meeting future demand, and to avoiding gridlock in the sky and at U.S airports. NextGen will open worldwide's skies to continued growth and increased safety while reducing aviation's environmental impact.

Dynamic Simulation of Modifiable Walking Pattern Generation to Handle Infeasible Navigational Commands for Humanoid Robots

  • Hong, Young-Dae;Lee, Ki-Baek;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.751-758
    • /
    • 2016
  • The modifiable walking pattern generation (MWPG) algorithm can handle dynamic walking commands by changing the walking period, step length, and direction independently. When an infeasible command is given, the algorithm changes the command to a feasible one. After the feasibility of the navigational command is checked, it is translated into the desired center of mass (CM) state. To achieve the desired CM state, a reference CM trajectory is generated using predefined zero moment point (ZMP) functions. Based on the proposed algorithm, various complex walking patterns were generated, including backward and sideways walking. The effectiveness of the patterns was verified in dynamic simulations using the Webots simulator.

Fault-Tolerant Gait Generation of Hexapod Robots for Locked Joint Failures (관절고착고장에 대한 육각 보행 로봇의 내고장성 걸음새 생성)

  • Yang Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • Fault-tolerant gait generation of a hexapod robot with crab walking is proposed. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. Due to the reduced workspace of a failed leg, fault-tolerant crab walking has a limitation in the range of heading direction. In this paper, an accessible range of the crab angle is derived for a given configuration of the failed leg and, based on the principles of fault-tolerant gait planning, periodic crab gaits are proposed in which a hexapod robot realizes crab walking after a locked joint failure, having a reasonable stride length and stability margin. The proposed crab walking is then applied to path planning on uneven terrain with positive obstacles. i.e., protruded obstacles which legged robots cannot cross over but have to take a roundabout route to avoid. The robot trajectory should be generated such that the crab angle does not exceed the restricted range caused by a locked joint failure.

Streamlined Rotors Mini Rotorcraft : Trajectory Generation and Tracking

  • Beji Lotfi;Abichou Azgal
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.87-99
    • /
    • 2005
  • We present in this paper the stabilization (tracking) with motion planning of the six independent configurations of a mini unmanned areal vehicle equipped with four streamlined rotors. Naturally, the yaw-dynamic can be stabilized without difficulties and independently of other motions. The remaining dynamics are linearly approximated around a small roll and pitch angles. It will be shown that the system presents a flat output that is likely to be useful in the motion generation problem. The tracking feedback controller is based on receding horizon point to point steering. The resulting controller involves the lift (collective) time derivative for what flatness and feedback linearization are used. Simulation tests are performed to progress in a region with approximatively ten-meter-buildings.

Automatic Gait Generation for Quadruped Robot Using a GP Based Evolutionary Method in Joint Space (관절 공간에서의 GP 기반 진화기법을 이용한 4족 보행로봇의 걸음새 자동생성)

  • Seo, Ki-Sung;Hyun, Soo-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.573-579
    • /
    • 2008
  • This paper introduces a new approach to develop a fast gait for quadruped robot using GP(genetic programming). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Several recent approaches have focused on using GA(genetic algorithm) to generate gait automatically and shown significant improvement over previous results. Most of current GA based approaches used pre-selected parameters, but it is difficult to select the appropriate parameters for the optimization of gait. To overcome these problems, we proposed an efficient approach which optimizes joint angle trajectories using genetic programming. Our GP based method has obtained much better results than GA based approaches for experiments of Sony AIBO ERS-7 in Webots environment.

NURBS Interpolation Strategies of Complex Surfaces in High Speed Machining

  • Ameddah, Hacene;Assas, Mekki
    • International Journal of CAD/CAM
    • /
    • v.11 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • The increase in the productivity and the assurance of quality machining on the NC machines depends on, amongst other things, the perfection of the programming using adequate methods of interpolation. The programming language is until now based on the code ISO 6983 which defines the principles of the code G. This latter is not well adapted to the new strategies of machining imposed by the machining of complex surfaces and machining at high speed with the increasingly more severe requirements of precision. The CNC which adopt the interpolation of NURBS (Non Uniform Rational B-spline) are very rare (FANUC Siemens${\ldots}$). Based on the advantages of NURBS (continuity, flexibility, smoothing$.{\ldots}$), new formats G are currently developed but their use is still very limited. Our work consists on putting forward these new approaches of programming using the interpolation of NURBS. For this reason, a program capable to trace NURBS trajectories under Visual BASIC 6.0 was developed. This program was used thereafter in CAM software for the generation of NURBS formats like their new formats NC.

  • PDF