• Title/Summary/Keyword: Trajectory following

검색결과 175건 처리시간 0.196초

최적제어를 이용한 경로점 유도 (Waypoint guidance using optimal control)

  • 황익호;황태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1867-1870
    • /
    • 1997
  • Waypoint guidance is a technique used to steer an autonomous vehicle along a desired trajectory. In this paper, a waypoint guidance algorithm for horizontal plane is derived by combining a line following guidance law and a turning guidance law. The line following guidance is derived based on LQR while the turning guidance is designed using rendzvous problem. Through simulation, the proposed method shows a good performance.

  • PDF

입력 제한을 가진 추종 로봇을 고려한 선도 로봇 제어기 (Leader Robot Controller Considering Follower with Input Constraint)

  • 이승주;홍석교
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1032-1040
    • /
    • 2012
  • This paper proposes controller of leader robot considering following robot with input constraints based on leader-following approach. In the previous formation control researches, it was assumed that leader and follower is same object. If leader robot drives as maximum speed that the initial position errors still remain even if following robot have same velocity as a leader. In the situation that velocity of following robot is lower than its leader robot, following robot cannot follow leader robot. Furthermore, the following robot will not be able to made formation with leader robot and keep proximity communication or sensing range. Therefore, multiple mobile robot system using leader-following method should be guaranteed range to get information each other. In this paper, Leader robot is driving to goal position using linear controller and following robot is following trajectory to be made from leader robot. We assume that following robot has input constraints to realize different performance between leader robot and following robot. We design controller of leader robot for desired goal position including the errors between formation and following robot. Thus, we propose leader robot controller considering input constraints of following robot. Finally, we were able to confirm the validity of the proposed method based on simulation results.

고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구- (Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism-)

  • 한기수;정명균
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.252-261
    • /
    • 1991
  • 본 연구에서는 2상 횡분류의 평균 유동특성을 비교적 정확히 예측할 수 있는 방법을 제시하는데 있다. 이를 위하여 2상 기체 분류속에 유입되는 자유흐름의 질량 유입을 Keffer와 Baines의 유입함수를 이용하기로 하며, 입자와 기체분류사이의 궤적 이탈을 고려하기로 한다. 이런 모델을 이용하여 2상 횡분류의 분출초기의 입자와 기 체분류의 속도비(particle to gas velocity ratio at the jet exit)가 유동에 미치는 영향을 알아보고자 한다.

개별차량 주행패턴 분석을 통한 교통사고 위험도 분석 기법 (Methodology for Evaluating Collision Risks Using Vehicle Trajectory Data)

  • 김준형;송태진;오철;성낙문
    • 대한교통학회지
    • /
    • 제26권5호
    • /
    • pp.51-62
    • /
    • 2008
  • 최근 각종 센서 및 통신기술의 발달은 다양한 교통류의 정보를 실시간으로 수집하고 관리, 제공 할 수 있는 환경을 제공하게 되었다. 본 연구에서는 이러한 실시간 모니터링 환경에서 차량추종 및 차로변경 이벤트 발생 시 안전도를 평가할 수 있는 방법론을 개발하였다. 이를 위해 이미지 트랙킹을 통해 추출된 개별차량 주행 정보와 기존 교통상충분석기법을 응용하였다. 차량 간 안전거리 개념을 반영한 RSI(Real-time Safety Index)와 첨단안전차량의 효과 및 성능평가 등에 주로 사용되는 TTC(Time-to-Collision), 모멘텀 보존의 법칙을 이용한 충돌에너지 개념을 추출된 개별차량의 주행정보에 적용하여 교통사고 위험도를 분석하였다. 본 연구에서 제시된 방법론은 향후 교통사고 분석 및 실시간 안전평가를 위한 자료수집이 가능한 검지시스템의 개발과 평가 등에 효과적으로 활용될 것으로 기대된다.

로보트와 포지셔너의 특이성 회피 방법 (A Method of Singularity Avoidance for A Robot-Positioner System)

  • 최신형;서일홍;임준홍;김경기
    • 대한전자공학회논문지
    • /
    • 제26권6호
    • /
    • pp.7-14
    • /
    • 1989
  • 본 논문에서는 R-P 시스템의 특이성 회피 기능을 갖는 경로제어 방법에 관하여 논하였다. 먼저 R-P 시스템을 하나의 기구학적 모델로 하여 여유자유도를 갖는 Manippulator 제어 문제로 유도하였다. 또한 R-P 시스템의 특이성을 해식적으로 분석 고찰한 후 (내부)특이성일때 이를 회피하면서 경로오차를 허용범위내에 있도록 하기 위하여 DLS(damped least square)의 Damping Factor를 가변시켜 주는 방법을 제시하였다. 제시된 방법의 타당성을 보이기 위하여 5자유도를 갖는 Rhino 로보트와 2자유도를 갖는 포지셔널을 대상으로 조작성능지수(manipulability)를 최대화하는 방법, 고정 Damping Factor를 갖는 DLS 방법과 제시된 가변 Damping을 갖는 DLS 방법을 컴퓨터 시뮬레이션을 통하여 경로오차와 성능지수 및 관절속도에 관점을 두어 비교 검토하였다.

  • PDF

이족 보행로봇의 동적 보행 제어에 관한 연구 (A Study on Dynamic Walking Control of Biped Robot)

  • 심병균;정양근;심현석;이우송
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.245-254
    • /
    • 2014
  • In this paper, stable and robust dynamic walking for a biped motion is proposed. To success this objective, the following structures are processed. In this paper, the proposed control method is one that adjusts actual zero moment position to move to the closest possible point in the stable area instead of following desired zero moment position. This minimizes energy consumption with the smallest joint movements. The proposed control method makes mechanical energy that drives lower limb of the bipedal robot efficient. In this paper, walking experiment is carried out with the three control structures mentioned above. The trajectory generated by off-line is illustrated by performing to walking on flat ground. experiment with an obstacle whose height is lower than that of trajectory is executed to validate dynamic motion.

궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법 (Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities)

  • 백승묵;박정욱
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.

로봇 팔레타이징 시뮬레이터를 위한 적재 패턴 생성 및 시변 장애물 회피 알고리즘의 제안 (Algorithmic Proposal of Optimal Loading Pattern and Obstacle-Avoidance Trajectory Generation for Robot Palletizing Simulator)

  • 유승남;임성진;김성락;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1137-1145
    • /
    • 2007
  • Palletizing tasks are necessary to promote efficient storage and shipping of boxed products. These tasks, however, involve some of the most monotonous and physically demanding labor in the factory. Thus, many types of robot palletizing systems have been developed, although many robot motion commands still depend on the teach pendant. That is, the operator inputs the motion command lines one by one. This is very troublesome and, most importantly, the user must know how to type the code. We propose a new GUI(Graphic User Interface) for the palletizing system that is more convenient. To do this, we used the PLP "Fast Algorithm" and 3-D auto-patterning visualization. The 3-D patterning process includes the following steps. First, an operator can identify the results of the task and edit them. Second, the operator passes the position values of objects to a robot simulator. Using those positions, a palletizing operation can be simulated. We chose a widely used industrial model and analyzed the kinematics and dynamics to create a robot simulator. In this paper we propose a 3-D patterning algorithm, 3-D robot-palletizing simulator, and modified trajectory generation algorithm, an "overlapped method" to reduce the computing load.

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1527-1533
    • /
    • 2011
  • The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

악관절 폐구성 과두걸림 환자의 하악운동에 관한 연구 (A Study on the Mandibular Movements in the Patients with TMJ Lock Closed)

  • Ji-Won Lee;Sung-Chang Chung
    • Journal of Oral Medicine and Pain
    • /
    • 제15권1호
    • /
    • pp.79-89
    • /
    • 1991
  • The author examined the patterns and various ranges of mandibular movements in TMJ lock closed patients in the frontal, sagittal and horizontal plane and obtained the following results. 1. In the frontal trajectory, the mean amount of maximum mouth opening was 24.4mm and the opening paths were deviated to the affected side in 87.1% of the patients. The mean amount of maximum laterotrusion to the affected side was 10.4mm and that of non-affected side was 7.5mm. There was a significant difference between them(p<0.001). 2. In the sagittal trajectory, the mean amount of the maximum protrusion was 7.0mm, the mean amount of the maximal retrusion was 1.0mm 3. In the horizontal trajectory, the pattern of laterotrusion showed asymmetry: the mean length of non-affected side was smaller than that of the affected side. Protrusive path were deviated to the affected side in 64.5% of the patients, the mean degree of deviation was 16.4$^{\circ}$. The mandibular movements of TMJ lock-closed patients can be characterized by decreased range of mouth opening, protrusive movement, and laterotrusive movement to the non-affected side and also characterized by deviated opening and protrusive path to the affected side.

  • PDF