• Title/Summary/Keyword: Trajectory Tracking Motion Control

Search Result 94, Processing Time 0.023 seconds

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment (실내 환경에서의 쿼드로터형 무인 비행체를 위한 비전 기반의 궤적 추종 제어 시스템)

  • Shi, Hyoseok;Park, Hyun;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.

Convolution-based Desired Trajectory Generation Method Considering System Specifications (시스템 사양을 고려한 컨볼루션 기반 목표궤적 생성 방법)

  • Lee, Geon;Choi, Young-Jin;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.997-1005
    • /
    • 2010
  • Most motion control systems consist of a desired trajectory generator, a motion controller such as a conventional PID controller, and a plant to be controlled. The desired trajectory generator as well as the motion controller is very important to achieve a good tracking performance. Especially, if the desired trajectory is generated actively utilizing the maximum velocity, acceleration, jerk and snap as given system specifications, the tracking performance would be better. For this, we make use of the properties of convolution operator in order to generate a smooth (S-curve) trajectory satisfying the system specifications. Also, the proposed trajectory generation method is extended to more general cases with arbitrary initial and terminal conditions. In addition, the suggested trajectory generator can be easily realized for real-time implementation. Finally, the effectiveness of the suggested method is shown through numerical simulations.

Robust Control of Trajectory Tracking for Hydraulic Excavator (유압 굴삭기의 궤적 추종을 위한 강인 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

  • Zhou, Jiajia;Ye, Dingqi;Zhao, Junpeng;He, Dongxu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-293
    • /
    • 2018
  • This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV) using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances.

Trajectory Control of a Hydraulic Excavator using Adaptive-Robust Control Method (적응-강인 제어기법을 이용한 유압 굴삭기의 궤적 제어)

  • 최종환;김용석;김승수;양순용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.186-194
    • /
    • 2003
  • This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system fir parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

  • PDF

Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion (고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.582-590
    • /
    • 2007
  • Nonlinear adaptive control of overhead cranes is investigated for anti-sway trajectory tracking with high-speed hoisting motion. The sway dynamics of two dimensional underactuated overhead cranes is heavily coupled with the trolley acceleration, hoisting rope length, and the hoisting velocity which is an obstacle in the design of decoupling control based anti-sway trajectory tracking control law To cope with this obstacle. we propose a fuzzy nonlinear adaptive anti-sway trajectory tracking control law guaranteeing the uniform ultimate boundedness of the sway dynamics even in the presence of uncertainties in such a way that it cancels the effect of the trolley acceleration and hoisting velocity on the sway dynamics. In particular. system uncertainties, including system parameter uncertainty unmodelled dynamics, and external disturbances, are compensated in an adaptive manner by utilizing fuzzy uncertainty observers. Accordingly, the ultimate bound of the tracking errors and the sway angle decrease to zero when the fuzzy approximation errors decrease to zero. Finally, numerical simulations are performed to confirm the effectiveness of the proposed scheme.

A hierachical control structure of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 계층적 제어구조)

  • 박태형;이영대;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1046-1051
    • /
    • 1991
  • For the conveyor tracking application of a robot manipulator, a new control scheme is presented. The presented scheme is divided into two stages : the upper one is the motion planning stage and the lower one is the motion control stage. In the upper stage, the nominal trajectory which tracks the part moving in a constant velocity, is planned considering the robot arm dynamics. On the other hand, in the lower level, the perturbed trajectory is generated to track the variation in the velocity of conveyor belt via sensory feedback and the perturbed arm dynamics. In both stages, the conveyor tracking problem is formulated as an optimal tracking problem, and the torque constraints of a robot manipulator are taken into account. Simulation results are then presented and discussed.

  • PDF

Development of Simulation Model for Trajectory Tracking on Hydraulic System (유압시스템의 궤적 추종 시뮬레이션 모델 개발)

  • Choi, Jong-Hwan
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.61-66
    • /
    • 2008
  • The hydraulic system have been used much in a heavy machine which high power source is desired. In the case of the heavy press machine and the injection molding machine, the use of the hydraulic power is essential especially for increasing productivity and getting the good products. Because the hydraulic circuit is very complex and the system parameters are uncertain, the development of the simulation model for hydraulic system is not easy in the heavy machine. In this case, Many researchers have used a commercial program for analysis and development in a major field of study. In this paper, the aim is to develop the simulation model of the hydraulic system with various commercial program for trajectory tracking. And adaptive control method is applied to the simulation model for the trajectory tracking of a cylinder motion. Load on the cylinder is modeled in ADAMS program, the hydraulic circuit including pump, spool valve and cylinder is modeled in AMESim program and a controller is designed in MatLab/simulink program. The suggested model is applied for the tracking of a cylinder motion, and through computer simulation, its trajectory tracking performance is illustrated.

  • PDF

Backward motion control of a mobile robot with n passive trailers

  • Park, Myoung-Kuk;Chung, Woo-Jin;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1190-1195
    • /
    • 2003
  • In this paper, it is shown how a robot with n passive trailers can be controlled in backward direction. When driving backward direction, a kinematic model of the system is represented highly nonlinear equations. The problem is formulated as a trajectory following problem, rather than control of independent generalized coordinates. Also, the state and input saturation problems are formulated as a trajectory generation problem. The trajectory is traced by a rear hinge point of the last trailer, and reference trajectories include line segments, circular shapes and rectangular turns. Experimental verifications were carried out with the PSR-2(public service robot $2^{nd}$ version) with three passive trailers. Experimental result showed that the backward motion control can be successfully carried out using the proposed control scheme.

  • PDF