• 제목/요약/키워드: Trajectory Parameter

검색결과 237건 처리시간 0.023초

Post Trajectory Insertion Performance Analysis of Korea Pathfinder Lunar Orbiter Using SpaceX Falcon 9

  • Young-Joo Song;Jonghee Bae;SeungBum Hong;Jun Bang;Donghun Lee
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권3호
    • /
    • pp.123-129
    • /
    • 2023
  • This paper presents an analysis of the trans-lunar trajectory insertion performance of the Korea Pathfinder Lunar Orbiter (KPLO), the first lunar exploration spacecraft of the Republic of Korea. The successful launch conducted on August 4, 2022 (UTC), utilized the SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station. The trans-lunar trajectory insertion performance plays a crucial role in ensuring the overall mission success by directly influencing the spacecraft's onboard fuel consumption. Following separation from the launch vehicle (LV), a comprehensive analysis of the trajectory insertion performance was performed by the KPLO flight dynamics (FD) team. Both orbit parameter message (OPM) and orbit determination (OD) solutions were employed using deep space network (DSN) tracking measurements. As a result, the KPLO was accurately inserted into the ballistic lunar transfer (BLT) trajectory, satisfying all separation requirements at the target interface point (TIP), including launch injection energy per unit mass (C3), right ascension of the injection orbit apoapsis vector (RAV), and declination of the injection orbit apoapsis vector (DAV). The precise BLT trajectory insertion facilitated the smoother operation of the KPLO's remainder mission phase and enabled the utilization of reserved fuel, consequently significantly enhancing the possibilities of an extended mission.

로보트 운용조건을 포함한 가변구조 제어방식에 관한 연구 (A study on the variable structure control method including robot operational condition)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.72-75
    • /
    • 1988
  • Due to the fact that the set point regulation scheme by the variable structure control method concerns only the initial and final locations of a manipulator, many constraints may exist in the application of path tracking with obstracle avoidance. The variable structure parameter should be selected in the trajectory planning step by satisfying the constraints of the travel time and the path deviations This paper presents the selection algorithm of the variable structure parameters with the constraints of the system dynamics and the travel time and the path deviation. This study makes unify the trajectory planning and tracking control using the variable structure control method.

  • PDF

연료액적의 Air-Assisted Breakup에 대한 수치해석적 연구 (A Numerical Study on Air-Assisted Breakup of Fuel Droplets)

  • 황상순
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.57-65
    • /
    • 1996
  • Breakup models are evaluated using the experimental drop trajectory ill this study. The experimental conditions corespond to Weber # 56, 260, 463. Computations are carried out using a modified KIVA-II program with 2 different breakup submodel(TAB and Wave breakup model) and dynamic drag model which the drag coefficient changes dynamically with distortion parameter. Results show that computation with wave breakup model represents the experimental drop trajectory better than that with TAB submodel. And result with wave breakup model shows similar breakup pattern to experimental breakup process. It is thought that in wave breakup model the small drops are shed from the parent drop throughout parcel lifetime such thai this modelling represents the real breakup process well.

  • PDF

신발테스트용 로봇의 동적 특성에 관한 모델링 (Modeling of Dynamics of Robot for Shoe Testing)

  • 탁계래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1225-1227
    • /
    • 2004
  • The robotic shoe testing system that mechanically simulates human motion was proposed to overcome the problems associated with human subject tests. The objective of this study is to predict new motion trajectory for robot that will produce similar force and moment of particular human motion. In order to solve this problem, it is imperative to understand the dynamics of robot for shoe testing. The methodology using parameter estimation technique was proposed for this problem. Since the dynamics of robot is certainly different from that of human, it is necessary to adapt/modify the robot's trajectory for future analysis, which is currently under investigation.

  • PDF

전기-유압서보에 의한 자동유압굴삭기의 개발에 관한 연구(1) -가변구조에 의한 궤도추종제어 시뮬레이션- (A study on the development of Electro-hydraulic servo Excavator(1) -Simulation of the trajectory tracking control using VSS-)

  • 허준영;하석홍;이진걸
    • 한국정밀공학회지
    • /
    • 제6권2호
    • /
    • pp.65-76
    • /
    • 1989
  • The objective of this paper is to design the variable structure system(VSS) controller for the tracking control of excavator which is driven by electro-hydraulic servomechansim. It is generally agreed that the dynamic characteristics of the robot arm such as excavator are coupled, time varying, and highly nonlinear, and also hydraulic system contains nonlinear characteristics in itself, so performing exact position control and trajectory tracking control need remarkable consideration. To solve this porblem, this system was designed as a variable structure system. The salient feature of VSS is that the sliding mode occur on a switching surface. While in sliding mode, the system remains insensitive to parameter variations and disturbances. This control algorithm was applied to a hydraulic excavator by simulaltion and to a simulator by experiment. And its effectiveness was verified. And the results of VSS for the electro-hydraulic excavator was compared with that of the PID when load disturbances and system parameter variations exist.

  • PDF

DNP 제어기에 의한 비선형 동적 매니퓰레이터의 실시간 경로 제어 (Real-Time Collision-Free Trajectory Control of Nonlinear Dynamic Manipulator Control Using DNP Controller)

  • 조현섭
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.835-840
    • /
    • 2010
  • 본 논문은 가변 구조 제어기의 단점인 도달영역에서의 파리미터의 불확실성과 외부 외란에 대한 민감성을 감소시키는 방안으로 DNP제어를 제시한다. 비선형 동적 매니퓰레이터를 통하여 시스템의 상태 궤적이 초기 위치에서부터 평형점에 이르기까지 외란과 파라미터의 불확실성에 강인하게 되며 아울러 목표 직각 좌표까지 도달시간 뿐만 아니라 평형점까지의 도달시간도 감소하게 되는 특성을 보이고자 한다. 제안된 제어 구조의 효과는 시뮬레이션을 통해 증명하였다.

로봇팔의 장애물 중에서의 시간 최소화 궤도 계획 (Minimum-Time Trajectory Planning for a Robot Manipulator amid Obstacles)

  • 박종근
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.78-86
    • /
    • 1998
  • This paper presents a numerical method of the minimum-time trajectory planning for a robot manipulator amid obstacles. Each joint displacement is represented by the linear combination of the finite-term quintic B-splines which are the known functions of the path parameter. The time is represented by the linear function of the same path parameter. Since the geometric path is not fixed and the time is linear to the path parameter, the coefficients of the splines and the time-scale factor span a finite-dimensional vector space, a point in which uniquely represents the manipulator motion. The displacement, the velocity and the acceleration conditions at the starting and the goal positions are transformed into the linear equality constraints on the coefficients of the splines, which reduce the dimension of the vector space. The optimization is performed in the reduced vector space using nonlinear programming. The total moving time is the main performance index which should be minimized. The constraints on the actuator forces and that of the obstacle-avoidance, together with sufficiently large weighting coefficients, are included in the augmented performance index. In the numerical implementation, the minimum-time motion is obtained for a planar 3-1ink manipulator amid several rectangular obstacles without simplifying any dynamic or geometric models.

  • PDF

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong;Ji, Aihong;Cheng, Yong;Zhao, Wenlong;Pan, Hongtao;Shi, Shanshuang;Song, Yuntao
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2708-2715
    • /
    • 2021
  • The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.

적응제어 및 시스템 규명을 이용한 Field Robot의 궤적 제어 (Trajectory Control of Field Robot Using Adaptive Control and System Identification)

  • 김승수;서우석;양순용;이병룡;안경관
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.728-735
    • /
    • 2002
  • The Field robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we have developed an automatic excavation system and an adaptive control system. A model-reference adaptive controller has been designed based on the model that is obtained through off-line system identification. It is illustrated by computer simulations that the proposed control system gives good performance in the trajectory tracking control and the adaptation to parameter variation.

적응제어 및 시스템 규명을 이용한 Field Robot의 궤적 추종 제어 (Trajectory Tracking Control of Field Robot using Adaptive Control and System Identification)

  • 서우석;김승수;양순용;이병룡;안경관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.469-474
    • /
    • 2002
  • The Field Robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we have developed an automatic excavation system and adaptive control system. A model- reference adaptive controller has been designed on the model that is obtained through off-line System Identification. It is illustrated by computer simulations that the proposed control system gives good performances in the trajectory tracking control and adaptation to parameter variation.

  • PDF