Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
/
v.7
no.1
/
pp.43-49
/
1996
In this study, remote articulation training system which connects the hearing disabled trainee and the speech therapist via B-ISDN is introduced. The hearing disabled does not have the hearing feedback of his own pronuciation, and the chance of watching his speech organs movement trajectory will offer him the self-training of articulation. So the system has two purposes of self articulation training and trainer's on-line checking in remote place. We estimate the vocal tract articultory movements from the speech signal using inverse modelling and display the movement trajectoy on the sideview of human face graphically. The trajectories of trainees articulation is displayed along with the reference trajectories, so the trainee can control his articulating to make the two trajectories overlapped. For on-line communication and ckecking training record the system has the function of video conferencing and tranferring articulatory data.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.4
/
pp.528-533
/
2010
This paper studied the training methods less affected by the emotional variation for the development of the robust speech recognition system. For this purpose, the effect of emotional variation on the speech signal and the speech recognition system were studied using speech database containing various emotions. The performance of the speech recognition system trained by using the speech signal containing no emotion is deteriorated if the test speech signal contains the emotions because of the emotional difference between the test and training data. In this study, it is observed that vocal tract length of the speaker is affected by the emotional variation and this effect is one of the reasons that makes the performance of the speech recognition system worse. In this paper, a training method that cover the speech variations is proposed to develop the emotionally robust speech recognition system. Experimental results from the isolated word recognition using HMM showed that propose method reduced the error rate of the conventional recognition system by 28.4% when emotional test data was used.
Journal of rehabilitation welfare engineering & assistive technology
/
v.10
no.3
/
pp.221-228
/
2016
In this paper, we introduce our simulation software for EEG signal accuracy improvement. Users can check and train own EEG signal accuracy using our simulation software. Subjects were shown emotional imagination condition with landscape photography and logical imagination condition with a mathematical problem to subject. We use that EEG signal data, and apply Independent Component Analysis algorithm for noise removal. So we can have beta waves(${\beta}$, 14-30Hz) data through Band Pass Filter. We extract feature using Root Mean Square algorithm and That features are classified through Support Vector Machine. The classification result is 78.21% before EEG signal accuracy improvement training. but after successive training, the result is 91.67%. So user can improve own EEG signal accuracy using our simulation software. And we are expecting efficient use of BCI system based EEG signal.
Hyung Jin Choun;Jung-in Kim;Jong Min Park;Jaeman Son
Progress in Medical Physics
/
v.33
no.4
/
pp.136-141
/
2022
Purpose: This study aimed to develop a breath control training system for breath-hold technique and respiratory-gated radiation therapy wherein the patients can learn breath-hold techniques in their convenient environment. Methods: The breath control training system comprises a sensor device and software. The sensor device uses a loadcell sensor and an adjustable strap around the chest to acquire respiratory signals. The device connects via Bluetooth to a computer where the software is installed. The software visualizes the respiratory signal in near real-time with a graph. The developed system can signal patients through visual (software), auditory (buzzer), and tactile (vibrator) stimulation when breath-holding starts. A motion phantom was used to test the basic functions of the developed breath control training system. The relative standard deviation of the maxima of the emulated free breathing data was calculated. Moreover, a relative standard deviation of a breath-holding region was calculated for the simulated breath-holding data. Results: The average force of the maxima was 487.71 N, and the relative standard deviation was 4.8%, while the average force of the breath hold region was 398.5 N, and the relative standard deviation was 1.8%. The data acquired through the sensor was consistent with the motion created by the motion phantom. Conclusions: We have developed a breath control training system comprising a sensor device and software that allow patients to learn breath-hold techniques in their convenient environment.
The Transactions of the Korean Institute of Electrical Engineers
/
v.41
no.2
/
pp.209-216
/
1992
Deafs train articulation by observing mouth of a tutor, sensing tactually the motions of the vocal organs, or using speech training aids. Present speech training aids for deafs can measure only single speech parameter, or display only frequency spectra in histogram of pseudo-color. In this study, a speech training aids that can display subject's articulation in the form of a cross section of the vocal organs and other speech parameters together in a single system is to be developed and this system makes a subject know where to correct. For our objective, first, speech production mechanism is assumed to be AR model in order to estimate articulatory motions of the vocal organs from speech signal. Next, a vocal tract profile model using LP analysis is made up. And using this model, articulatory motions for Korean vowels are estimated and displayed in the vocal tract profile graphics.
An usual acoustic emission(AE) event has two widely characterized parameters in time domain, peak amplitude and event duration. But noise in AE measuring may disturb the signals with its parameters and aggrandize the signal incertitude. Experiment activity of detection of the nick inside of porcelain with AE was made and study on AE signal processing with statistic be presented in this paper in order to pick-up information expected from the signal with noise. Effort is concentrated on developing a novel arithmetic to improve extraction of the characteristic from stochastic signal and to enhance the voracity of detection. The main purpose discussed in this paper is to treat with signals on amplitudes with statistic mutuality and power density spectrum in frequency domain, and farther more to select samples for neural networks training by means of least-squares algorithm between real measuring signal and deterministic signals under laboratory condition. By seeking optimization with the algorithm, the parameters representing characteristic of the porcelain object are selected, while the stochastic interfere be weakened, then study for detection on neural networks is developed based on processing above.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.7
/
pp.493-503
/
2018
Recently, as living standards have improved, many people are becoming more interested in health, and self-training is increasing through exercise to prevent and manage pre-illness. In general, an imbalance of muscles causes asymmetry of posture, which can cause various diseases by accompanying an adjustment force, circulation action, displacement of internal organs, etc.. In this study, the development of fitness software that can be self - training among smart wears has attracted considerable attention in recent years. In this study, a technology was proposed for the commercialization of self - trainer fitness wear by a simulation through Android - based applications. Self - trainer fitness software was developed by combining a conductive polymer, fashion design, sewing, and electric and electronic technology to monitor the unbalance of the muscles during exercise and make smart wear that can calibrate the asymmetry by oneself. In particular, a polymer sensor was fabricated by deriving the optimal MWCNT concentration, and the electrode signal was collected by attaching the electrode to the optimal position, where the electrode signal line using the conductive fiber was designed and attached to collect the signal. A signal module that converts the bio-signals collected through electrical signal conversion and transmits them using Bluetooth communication was designed and manufactured. Self-trainer fitness software that can be commercialized was developed by combining noise cancellation with Android-based self-training application using a software algorithm method.
This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.10
/
pp.2275-2284
/
2015
In this paper, the Walsh coded orthogonal training signals for 4 × 4 multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems are designed and the channel estimation equations are derived as a closed form, taking account of the inter training signal interference problems caused by the multi-path delayed signals. The performances of the proposed channel estimation method are analyzed and compared with the conventional methods[9,14] by using computer simulation. The simulation results show that the proposed methods has better performances, compared with the conventional methods[9,14]. As a result, the proposed method can be used for MIMO-OFDM systems with null sub-carriers.
This paper introduces an adaptive and integrated utterance verification (UV) framework using minimum verification error (MVE) training as a new set of solutions suitable for real applications. UV is traditionally considered an add-on procedure to automatic speech recognition (ASR) and thus treated separately from the ASR system model design. This traditional two-stage approach often fails to cope with a wide range of variations, such as a new speaker or a new environment which is not matched with the original speaker population or the original acoustic environment that the ASR system is trained on. In this paper, we propose an integrated solution to enhance the overall UV system performance in such real applications. The integration is accomplished by adapting and merging the target model for UV with the acoustic model for ASR based on the common MVE principle at each iteration in the recognition stage. The proposed iterative procedure for UV model adaptation also involves revision of the data segmentation and the decoded hypotheses. Under this new framework, remarkable enhancement in not only recognition performance, but also verification performance has been obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.