Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.4
/
pp.224-234
/
2017
This paper compares the realities of the salary Peak Policy's status and management processes in Korea and Japan, with the aim of determining the development direction for Korea's salary Peak Policy's. Unlike Japan, which successfully achieved close cooperation between government, firms and workers in implementing the Retirement Age Extension Type salary Peak Policy, Korea experienced many problems due to lack of preparation. In order to rationally develop the salary Peak Policy, the government, firms, and workers must cooperate to increase the policy's efficiency via the following steps. First, gradually increase the proportion of retirement age extension. Second, career development that takes into account the various employment types, flexible working hours and aged workers. Third, development of training programs for senior citizen workers, as well as increasing support for changing of jobs and startups. Fourth, expansion of re-employment after retirement age and ways to make use of the skilled labor. Fifth, increasing work efficiency through bonuses and work evaluation that is specialized for aged workers. This paper argues that such measures are necessary for the co-existence of firms and workers, as well as for improving employment stability and labor market flexibility.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.4
/
pp.293-303
/
2017
Thus study examined the possible the link between social enterprises and lifelong education for the underprivileged. To this end, this study searched for the definition and position of social enterprises emerging from the welfare system under the influence of neoliberalism and overcoming the problems in terms of creating social jobs and providing welfare services. In addition, the lifelong education for the underprivileged was examined according to the subjects, such as the disabled, migrant women, young and adult low-income group, and senior citizens. The plan was as follows. First, the expansion of the proportion of community-affiliated social enterprises was analyzed. Second, it provides a differentiated support and protection market for social enterprise. Third, the development and dissemination of social entrepreneur training programs was examined. The results showed that the entire society should have a sense of responsibility for the support of the underprivileged. This provides implications for the linkage of lifelong education and social enterprise in the expansion possibility to improve the quality of life and expand lifelong education for the underprivileged.
Journal of the Korea Society of Computer and Information
/
v.25
no.6
/
pp.109-117
/
2020
An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.
This study reviewed the research in China on music interventions for adult brain injury patients. Eighty-three studies that met the inclusion criteria were included for analysis. Our review revealed that the number of intervention studies using music with adult brain injury patients has been on the rise since 2012, and random control research design methods have been dominant. Studies focused on the physical domain and emotional domain together were most common. Researchers in fields outside of music therapy conducted 43 of the studies, and music therapists carried out 14 of the studies as intervention providers. Most of the studies carried out by experts in fields other than music therapy used listening activities involving preexisting recorded music. However, most of the studies conducted by music therapists adopted reconstructed music and played it live during their intervention. The specificity of the described content of the interventions and level and relevance of stated rationale to the target goal of the intervention suggests that high quality of intervention was conducted with a therapist/investigator who has completed adequate professional education/training, which would emphasize the importance of music therapy professionalism. This study provides the baseline data for how music intervention research has been implemented in China and presents implications for future clinical practice and research.
A software system is required to change during its life cycle due to various requirements such as adding functionalities, fixing bugs, and adjusting to new computing environments. Such program code modification should be considered as carefully as a new system development becase unexpected software errors could be introduced. In addition, when reusing open source programs, we can expect higher quality software if code changes of the open source program are predicted in advance. This paper proposes a Convolutional Neural Network (CNN)-based deep learning model to predict source code changes. In this paper, the prediction of code changes is considered as a kind of a binary classification problem in deep learning and labeled datasets are used for supervised learning. Java projects and code change logs are collected from GitHub for training and testing datasets. Software metrics are computed from the collected Java source code and they are used as input data for the proposed model to detect code changes. The performance of the proposed model has been measured by using evaluation metrics such as precision, recall, F1-score, and accuracy. The experimental results show the proposed CNN model has achieved 95% in terms of F1-Score and outperformed the multilayer percept-based DNN model whose F1-Score is 92%.
The purpose of this study is to derive the characteristics of interaction design for each stage of content composition so that it can be referred to in the planning and production of virtual reality safety education contents. It was confirmed that each of the following interaction design features was found in the three configuration steps: acquisition of situation response procedure knowledge, accident situation experiential learning, and content confirmation and evaluation. First, it was revealed that the quality of experience was controlled by increasing the fidelity of behaviors and reducing general and repetitive behaviors in order to emphasize the educational content-related experiences in the learner experience stage. Second, in order for learners to easily recognize main interaction objects in order to acquire information on safe behavior procedures in unfamiliar environments, use of spatial UI or signifiers using arrows or symbols, posts that specifically instruct actions, and multisensory signals Therefore, it was found to be important to emphasize essential actions in a way that lowers the degree of freedom of user experience, and the proportion of non-realistic interactions for cognitive interactions was found to increase. Lastly, in the confirmation and evaluation stage of the experience, it is important to use the meta UI to alleviate negative experiences such as physical damage after experiencing a safety accident situation,
Lee, Gi Ha;Le, Xuan-Hien;Yeon, Min Ho;Seo, Jun Pyo;Lee, Chang Woo
Journal of Korean Society of Disaster and Security
/
v.14
no.3
/
pp.17-27
/
2021
In this study, classification models were built using machine learning techniques that can classify the soil creep risk into three classes from A to C (A: risk, B: moderate, C: good). A total of six machine learning techniques were used: K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, and Extreme Gradient Boosting and then their classification accuracy was analyzed using the nationwide soil creep field survey data in 2019 and 2020. As a result of classification accuracy analysis, all six methods showed excellent accuracy of 0.9 or more. The methods where numerical data were applied for data training showed better performance than the methods based on character data of field survey evaluation table. Moreover, the methods learned with the data group (R1~R4) reflecting the expert opinion had higher accuracy than the field survey evaluation score data group (C1~C4). The machine learning can be used as a tool for prediction of soil creep if high-quality data are continuously secured and updated in the future.
It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.
While it could become an alternative water resource, fog could undermine traffic safety and operational performance of infrastructures. To reduce such adverse impacts, it is necessary to have spatially continuous fog risk information. In this work, tree-based machine-learning models were developed in order to quantify fog risks with routine meteorological observations alone. The Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Random Forests (RF) were chosen for the regional fog models using operational weather and visibility observations within the Jeollabuk-do province. Results showed that RF seemed to show the most robust performance to categorize between fog and non-fog situations during the training and evaluation period of 2017-2019. While the LGB performed better than in predicting fog occurrences than the others, its false alarm ratio was the highest (0.695) among the three models. The predictability of the three models considerably declined when applying them for an independent period of 2020, potentially due to the distinctively enhanced air quality in the year under the global lockdown. Nonetheless, even in 2020, the three models were all able to produce fog risk information consistent with the spatial variation of observed fog occurrences. This work suggests that the tree-based machine learning models could be used as tools to find locations with relatively high fog risks.
The Journal of Korean society of community based occupational therapy
/
v.8
no.3
/
pp.77-89
/
2018
Objective : The purpose of this study was to analyze occupational therapy intervention on the community mobility for stroke patients, and to provide evidence of intervention in the clinical fields. Methods : A systematic review was executed according to the PRISMA checklist. The accessed database was PubMed, EMBASE, Cochrane Library (CENTRAL), ProQuest Dissertations & thesis (PQDT), RISS, and KoreaMed. We included the articles published from 2005 to September 2018. RoBANS checklist was used to evaluate the quality of the articles. Included articles, totally eight, were categorized according to the type of intervention. Results : The study design of the literature was varied from two-group randomized trial, quasi-experimental study, case-control trial, one group pre-post comparison study, and cross-sectional study. In the evidence level, 6 articles were included in level II (75%). The percentage of low risk of bias in each article ranged from 52.5%~87.5%. Four studies (50%) provided intervention based on virtual reality or virtual environment. The three (37.5%) provided intervention based on the protocol, and the other (12.5%) did wheelchair training. All studies reported significant effects of the intervention. Conclusion : This systematic review provided evidences to use proper intervention in the clinical fields. Various type of studies should be conducted to prove the effect of occupational therapy intervention for community mobility.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.