• 제목/요약/키워드: Training Algorithm

검색결과 1,881건 처리시간 0.03초

Combining a HMM with a Genetic Algorithm for the Fault Diagnosis of Photovoltaic Inverters

  • Zheng, Hong;Wang, Ruoyin;Xu, Wencheng;Wang, Yifan;Zhu, Wen
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1014-1026
    • /
    • 2017
  • The traditional fault diagnosis method for photovoltaic (PV) inverters has a difficult time meeting the requirements of the current complex systems. Its main weakness lies in the study of nonlinear systems. In addition, its diagnosis time is long and its accuracy is low. To solve these problems, a hidden Markov model (HMM) is used that has unique advantages in terms of its training model and its recognition for diagnosing faults. However, the initial value of the HMM has a great influence on the model, and it is possible to achieve a local minimum in the training process. Therefore, a genetic algorithm is used to optimize the initial value and to achieve global optimization. In this paper, the HMM is combined with a genetic algorithm (GHMM) for PV inverter fault diagnosis. First Matlab is used to implement the genetic algorithm and to determine the optimal HMM initial value. Then a Baum-Welch algorithm is used for iterative training. Finally, a Viterbi algorithm is used for fault identification. Experimental results show that the correct PV inverter fault recognition rate by the HMM is about 10% higher than that of traditional methods. Using the GHMM, the correct recognition rate is further increased by approximately 13%, and the diagnosis time is greatly reduced. Therefore, the GHMM is faster and more accurate in diagnosing PV inverter faults.

최근점 이웃망에의한 참조벡터 학습 (Learning Reference Vectors by the Nearest Neighbor Network)

  • Kim Baek Sep
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

불완전 시계열 데이터를 위한 이산 HMM 학습 알고리듬 (Discrete HMM Training Algorithm for Incomplete Time Series Data)

  • 신봉기
    • 한국멀티미디어학회논문지
    • /
    • 제19권1호
    • /
    • pp.22-29
    • /
    • 2016
  • Hidden Markov Model is one of the most successful and popular tools for modeling real world sequential data. Real world signals come in a variety of shapes and variabilities, among which temporal and spectral ones are the prime targets that the HMM aims at. A new problem that is gaining increasing attention is characterizing missing observations in incomplete data sequences. They are incomplete in that there are holes or omitted measurements. The standard HMM algorithms have been developed for complete data with a measurements at each regular point in time. This paper presents a modified algorithm for a discrete HMM that allows substantial amount of omissions in the input sequence. Basically it is a variant of Baum-Welch which explicitly considers the case of isolated or a number of omissions in succession. The algorithm has been tested on online handwriting samples expressed in direction codes. An extensive set of experiments show that the HMM so modeled are highly flexible showing a consistent and robust performance regardless of the amount of omissions.

An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios

  • Karamloo, Mohammad;Mazloom, Moosa
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.39-51
    • /
    • 2018
  • This study introduces a new algorithm to determine size independent values of fracture energy, fracture toughness, and fracture process zone length in three-point bending specimens with shallow to deep notches. By using the exact beam theory, a concept of equivalent notch length is introduced for specimens with no notches in order to predict the peak loads with acceptable precisions. Moreover, the method considers the variations of fracture process zone length and effects of higher order terms of stress field in each specimen size. In this paper, it was demonstrated that the use of some recently developed size effect laws raises some concerns due to the use of nonlinear regression analysis. By using a comprehensive fracture test data, provided by Hoover and Bazant, the algorithm has been assessed. It could be concluded that the proposed algorithm can facilitate a powerful tool for size effect study of three-point bending specimens with different notch lengths.

인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구 (Crack Identification Using Hybrid Neuro-Genetic Technique)

  • 서명원;심문보
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

인공지능을 이용한 휴머노이드 로봇의 자세 최적화 (Optimization of Posture for Humanoid Robot Using Artificial Intelligence)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

무학습 근전도 패턴 인식 알고리즘: 부분 수부 절단 환자 사례 연구 (Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation)

  • 박성식;이현주;정완균;김기훈
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.211-220
    • /
    • 2019
  • Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.

Training-Free Fuzzy Logic Based Human Activity Recognition

  • Kim, Eunju;Helal, Sumi
    • Journal of Information Processing Systems
    • /
    • 제10권3호
    • /
    • pp.335-354
    • /
    • 2014
  • The accuracy of training-based activity recognition depends on the training procedure and the extent to which the training dataset comprehensively represents the activity and its varieties. Additionally, training incurs substantial cost and effort in the process of collecting training data. To address these limitations, we have developed a training-free activity recognition approach based on a fuzzy logic algorithm that utilizes a generic activity model and an associated activity semantic knowledge. The approach is validated through experimentation with real activity datasets. Results show that the fuzzy logic based algorithms exhibit comparable or better accuracy than other training-based approaches.

WLAN 환경에서 효율적인 실내측위 결정을 위한 혼합 SVM/ANN 알고리즘 (Hybrid SVM/ANN Algorithm for Efficient Indoor Positioning Determination in WLAN Environment)

  • 권용만;이장재
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.238-242
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. The system that uses the artificial neural network(ANN) falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the SVM/ANN hybrid algorithm is proposed in this paper. The proposed algorithm is the method that ANN learns selectively after clustering the SNR data by SVM, then more improved performance estimation can be obtained than using ANN only and The proposed algorithm can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure. Experimental results indicate that the proposed SVM/ANN hybrid algorithm generally outperforms ANN algorithm.