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Abstract  

 

The traditional fault diagnosis method for photovoltaic (PV) inverters has a difficult time meeting the requirements of the 
current complex systems. Its main weakness lies in the study of nonlinear systems. In addition, its diagnosis time is long and its 
accuracy is low. To solve these problems, a hidden Markov model (HMM) is used that has unique advantages in terms of its 
training model and its recognition for diagnosing faults. However, the initial value of the HMM has a great influence on the 
model, and it is possible to achieve a local minimum in the training process. Therefore, a genetic algorithm is used to optimize 
the initial value and to achieve global optimization. In this paper, the HMM is combined with a genetic algorithm (GHMM) for 
PV inverter fault diagnosis. First Matlab is used to implement the genetic algorithm and to determine the optimal HMM initial 
value. Then a Baum-Welch algorithm is used for iterative training. Finally, a Viterbi algorithm is used for fault identification. 
Experimental results show that the correct PV inverter fault recognition rate by the HMM is about 10% higher than that of 
traditional methods. Using the GHMM, the correct recognition rate is further increased by approximately 13%, and the diagnosis 
time is greatly reduced. Therefore, the GHMM is faster and more accurate in diagnosing PV inverter faults. 
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I. INTRODUCTION 

Due to the increasingly serious environmental situation and 
the growing scarcity of resources, the development and 
utilization of solar energy has gradually developed into a 
major focus of the world's energy strategies, and photovoltaic 
power generation technology is the most common and most 
valuable of these. The development of photovoltaic power 
generation control technology is becoming more and more 
large and complex, and the increasing degree of automation 
increases the probability of system failure. The control 
system of photovoltaic power generation systems generally 
consists of a high power inverter. When the inverter has 
faults that are not timely diagnosed and repaired, they cause 
economic losses and security risks which cannot be undone. 
Thus, research on the fault diagnosis technology of 

photovoltaic (PV) inverters is critical. The current diagnostic 
method is based on a fast sampling circuit that raises an alarm 
when a fault occurs. The running state of the collected data is 
processed by a microprocessor to judge whether the system is 
in trouble, so that it can simultaneously send out the 
corresponding alarm signal. However, this method requires a 
long time and cannot accurately generate the alarm. With the 
increasing demand for reliability and safety of photovoltaic 
power generation systems, it is an urgent problem to diagnose 
and locate faults in time. The traditional fault diagnosis 
method primarily studies linear systems. However, most 
systems are nonlinear in practical applications. 

At present, the common fault diagnosis methods of PV 
inverters can be roughly divided into the following three 
categories. (1) Knowledge-based fault diagnosis methods [1], 
which are based on previously mastered experience and 
knowledge. These methods include neural networks, SVMs 
(support vector machines), and expert systems. R. L de 
Araujo Ribeiro et al. proposed an inverter fault diagnosis 
method based on a multi neural network structure [2]. H. 
Keskes and A. Braham used SVM and a pitch synchronous 
wavelet transform to complete the fault diagnosis of a motor 
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system [3]. D.J. Chen and Y.Z. Ye used a multi neural 
network algorithm to diagnose the faults of a three level 
inverter [4]. G.S. Hu, J. Xie and F.F. Zhu proposed the 
classification of power quality disturbances using wavelets 
and fuzzy support vector machines [5]. (2) Signal 
processing-based methods. These methods include Fourier 
transform and wavelet theory. S. Xu, W.X. Huang et al. used 
a method for the fault diagnosis of a six phase permanent 
magnet fault tolerant motor system based on a fast Fourier 
analysis [6]. A. Bouzida et al. used a wavelet transform to 
perform fault mode identification in industrial induction 
machines [7]. M. Pineda-Sanchez et al. used a method for the 
diagnosis of induction motor faults in the fractional Fourier 
domain [8]. Y. Yin, J. Yang et al. used a wavelet packet and 
Fourier analysis fault diagnosis of rolling bearings [9]. These 
methods do not require mathematical models, are easy to use, 
and have high diagnostic efficiency. However, the parameters 
need to be set according to expert experience. This problem 
reduces the usefulness of these methods. (3) Other methods 
of fault diagnosis include state estimation and bond graph 
theory [10].  

Generally, the main problems in the fault diagnosis of PV 
inverters can be summarized in four aspects. (1) At present, 
there is a lot of theoretical research but few practical 
applications. (2) There are many off-line diagnostic systems 
but fewer online diagnostic systems. (3) There is a failure to 
make full use of the potential information within systems. (4) 
Diagnostic systems are closed and need advanced 
programming technology. 

The object under research in this paper is the diode 
clamped PV inverter. In this paper, the fault diagnosis of the 
main circuit topology is studied. In addition, the HMM is 
combined with a genetic algorithm to detect the faults of 
inverters. Then it is compared with the neural network and 
SVM methods. The HMM is a model based on statistical 
analysis [11], which has been successfully applied in the field 
of speech recognition. Because of its powerful ability in 
pattern recognition, in recent years many scholars have also 
applied it to other fields. For example, it has been applied in 
character recognition, face recognition, behavior recognition, 
and ECG recognition. In the field of fault diagnosis, there 
have been many achievements, such as when C.L. Zhang, X. 
Yue et al. used the HMM to diagnose the failure of rotating 
machinery [12]. H. Ocak and K.A. Loparo, used the HMM to 
monitor and diagnose the faults of bearings [13]. X. Yue 
proposed a complex condition fault diagnosis technology 
based on the HMM [14]. The HMM is a method based on 
statistical pattern recognition theory. It can deal with dynamic 
processes well and it can make full use of the potential 
information within a system. It can monitor and diagnose the 
dynamic process during system operation. However, there is 
a fatal disadvantage in the HMM. The initial value of B in the 
HMM has a great influence on the model, and it is possible to 

achieve a local minimum value in the training process. 
Therefore, the correct recognition rate is reduced. The genetic 
algorithm [15] is a simulation of the survival of the fittest 
nature in the evolution of a phenomenon, where the search 
space is mapped to a genetic space, and the possible solutions 
are transformed into a vector (chromosome), where each 
element of the vector is called a gene. By calculating the 
fitness value for each of the chromosomes, the best 
chromosome is selected to get the optimal solution. Therefore, 
one of the most important characteristics of the genetic 
algorithm is global search. Therefore, the initial value of B 
can be optimized by the genetic algorithm. Therefore, it is of 
great significance to combine the HMM with a genetic 
algorithm for the fault diagnosis of PV inverters. 

 

II. ANALYSIS OF FAULT TYPES 

Before diagnosing the faults of a PV inverter, it is 
necessary to generalize and summarize the possible failure 
modes of the main electric power. In this paper, a three-level 
neutral-point-clamped (NPC) PV inverter is chosen as the 
research object. The main problem of PV inverters is the 
failure of the control system, which is generally caused by 
failures of the power switching devices (known in this paper 
as IGBTs). For the study of power devices, the failures of a 
PV inverter can be roughly divided into the following 
categories: 

1) Base drive faults of any IGBT. 
2) Short circuit faults of any IGBT. 
3) Intermittent faults of any IGBT. 
4) Open circuit faults of several IGBTs in the same 

phase. 
5) Short circuit faults of several IGBTs in the same 

phase. 
6) Several IGBT faults occurring in a cross phase. 

 

In these faults, the open circuit faults and short circuit 
faults are the most common. Between the open circuit and 
short circuit faults, there is no exact distinction. Shortly after 
the short circuit fault occurs, it is converted into an open 
circuit fault. Because the duration of a short circuit fault is 
extremely short, it is almost impossible to detect in real time. 
In an open circuit fault, the abnormal output voltage causes 
serious damage to the load. Therefore, it is necessary to 
increase the detection of this kind of fault in practical 
applications. In view of this, this paper mainly studies the 
open circuit modes of power devices (the above numbers 1, 4 
and 6). To simplify the problem, this paper only considers 
faults in a single phase. These faults can be divided into two 
types: single-IGBT faults and multi-IGBT faults. Two power 
devices having a fault at the same time is more common in 
multi-IGBT faults. However, the faults of more than two 
devices are not significant because the inverter system is 
already unable to run. 
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Fig. 1. Topology of Neural-Point-Clamped photovoltaic inverter 

 
TABLE I 

FAULT CODE 

Number Open circuit Number Open circuit

1 Sa1 6 Sa1 and Sa3 

2 Sa2 7 Sa1 and Sa4 

3 Sa3 8 Sa2 and Sa3 

4 Sa4 9 Sa2 and Sa4 

5 Sa1 and Sa2  10 Sa3 and Sa4 

 
The topology of a PV inverter is shown in Fig. 1. It has a 

total of 12 power switching devices (known in this paper as 
IGBTs). An open circuit fault causes a distortion of the 
output current of the inverter. Thus, the total harmonic rate 
increases, which results in a failure to meet the requirements 
of grid connection. This can result in more serious accidents 
if not handled in time. It can be seen from Fig. 1 that the open 
circuit fault mode of the system can be divided into the 
following two cases: 

1. Single IGBT fault, ijS , , ,i a b c ,  1,2,3,4j   

2. Two simultaneous IGBTs faults in the same bridge arm, 
of which there are 18 scenarios. 

This amounts to a total of 30 failure modes. Due to the 
three-phase symmetry of the NPC photovoltaic inverter, this 
paper mainly studies the typical fault modes which can reflect 
the whole fault, namely, 10 kinds of fault modes in a single 
phase. These 10 fault states are coded in Table I. 

 

III. OPTIMIZATION OF THE HMM BY A GENETIC 
ALGORITHM 

In this paper, a genetic algorithm is used to optimize the 

HMM (GHMM), and then the GHMM is used for the fault 
diagnosis of a PV inverter. 

A. The Basic Theory and Algorithm of the HMM 

The Hidden Markov Model or HMM and is an extension of 
the analysis of Markov chains. Its application has been an 
important achievement in the field of speech recognition 
since the 1980s. Because the actual problem is more complex 
than that described by Markov chains, the HMM introduces a 
probabilistic statistical model and uses the probability density 
function to calculate the output probability of a speech 
parameter to the HMM model. In searching for the best state 
sequence, the identification results are found by the criterion 
of the maximum posterior probability. An HMM has five 
basic elements that are represented as a five element array 

{ , , , , }N M A B : 

(1) N: the number of states in the model. The N states are 

expressed as 1 2, , , N   , and the state at time t is 

expressed as tq , 1 2( , , )t Nq     . 

(2) M: the number of distinct observation symbols per state. 

The M states v are expressed as 1 2, Mv v v , and the 

observable symbols at time t are expressed as tO , 

1 2( , , , )t MO v v v  . 

(3) : the initial state probability distribution is expressed 

as 1 2( , , , )N     , where ( ) i t iP q   , 1 i N  . 

(4) A: the state transition probability matrix is expressed as 

{ }ijA a , where 1( , )ij t j t ia P q q    , 1 ,  ji N  . 

(5) B: the observation probability matrix is expresses as 

{ ( )}jB b k ，where ( ) ( , )j t k t jb k P o v q    ,1 ,1j N k M    . 

For the sake of convenience, the simplified form  
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1( )t N 

1(3)t 

1(2)t 

1(1)t 

1 1
1

( ) ( )
N

t t ij j t
t

i a b O   




 
Fig. 2. Procedure of the Backward algorithm. 

 

( , , )A B is used. Thus, the HMM can be expressed as 

( , , )A B  . 

There are three basic algorithms in the HMM. These 
algorithms are (1) the Forward–Backward algorithm, (2) the 
Viterbi algorithm, and (3) the Baum–Welch algorithm. The 
Forward–Backward algorithm is the most basic and it must 
be used by the other two algorithms. In this paper, the 
Backward algorithm is introduced, and the Forward algorithm 

is similar to it. A backward variable is defined as ( )t i : 

1 2( ) ( , , ; | )t t t T t ii P O O O q S         (1) 

Fig. 2. shows the process. Then it is possible to calculate 
the backward variables for all of the hidden states at each 

time point (shown in the red circle), ( )t i . To calculate the 

probability of the observation sequence O at time t, they must 
all be added: 

1

( | ) ( )
N

t
i

P O i 


                (2) 

B. Genetic Algorithm 

As a problem-solving strategy, the genetic algorithm is a 
programming technique that mimics biological evolution. 
The main feature of this technique is the information 
exchange between the group searching strategy and the 
individuals in the group. The genetic algorithm adaptively 
controls the search process to obtain an optimal solution. It is 
a type of global optimization search algorithm that is 
completely different from the traditional HMM algorithm. 
First, the genetic algorithm maps the problem space into the 
space of chromosomes. This process is called coding, and it 
uses an evaluation function as a basis for genetic 
manipulation. The evaluation function is also called the 
fitness function. Its value is closely related to the search 
problem. The algorithm is initialized to form a group of  

 
Fig. 3. Procedure of the genetic algorithm. 

 
chromosomes that is composed of a number of individuals. 
Then the group is updated by the appropriate operator. 
Genetic operators include selection, crossover and mutation. 
The genetic algorithm is a search method using a randomized 
technique. However, it is not the same as the general random 
search algorithm. The genetic algorithm has a clear search 
direction, which makes it much more efficient. The steps of 
the genetic algorithm are shown in Fig. 3. 

C. Application of a Genetic Algorithm in the HMM 

The realization of fault diagnosis consists of two parts: 
training and recognition. In the HMM, the Baum–Welch 
algorithm is the basic training algorithm. However, it has a 
fatal flaw. The final solution depends on the selection of the 
initial value. As a result, it is easy to fall into a local optimum, 
which affects the recognition rate of the system. It is 
necessary to set the initial values of the parameters of each 
group when the Baum–Welch algorithm is used. If the initial 
value is not set appropriately, it takes too many iterations to 
achieve convergence, and the algorithm may converge to a 
locally optimal solution rather than a globally optimal 
solution. Therefore, the initial value selection is a very 
important problem. In particular, the initial value of B. In this 
paper, a genetic algorithm is used to optimize the initial value. 
Then the Baum–Welch algorithm is used to find the optimal 
model. A genetic algorithm is used to improve the HMM, and 
the procedure is shown in Fig. 4. 

The application of a genetic algorithm in the HMM mainly 
includes coding the parameters, designing the fitness function 
and operator, and setting the control parameters. The key 
steps in the GHMM are as follows: 
1) Parameter Coding: the general genetic algorithm does not 
directly address the problem of spatial parameters. However, 
the mapping of the genetic algorithm space is composed of 
genes according to a certain structure of the chromosome. 
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This process is called encoding. 
 

2) Fitness Function: evaluating the genetic algorithm is done 
exclusively through optimizing the fitness function. 
 

3) Genetic Operations in the GHMM: the genetic operators 

are composed of selection, crossover and mutation. Crossover 

is the core operator of a genetic algorithm.  
 

4) Setting the Control Parameters: the control parameters of 

a general genetic algorithm include setting the population, 

crossover probability, mutation probability, etc.  
 

 a) Length of the Coding String L: when binary code is used 

to represent an individual, the selection of the length L of the 

code string is related to the accuracy of the solution. 
 

b) Population Size N: the number of individuals in a group 

is called the size of the population. A reasonable value for N 

depends on the specific circumstances. 
 

c) Crossover Probability Pc: the crossover probability Pc 

controls the frequency of the crossover operation. Generally,  

useful crossover probabilities only take values from 0.25 to 

0.9. 

 

IV. FAULT DIAGNOSIS TECHNIQUE BASED ON THE 
GHMM 

In actual operation, it is usually not possible to understand 
all of the fault characteristics. Therefore, to diagnose how a 
fault occurred in an inverter, it is necessary collect the fault 
information obtained corresponding to various fault modes. 
As a result, it is necessary to analyze all of the relevant 
information in the inverter through a simulation with 
MATLAB software. In this paper, SIMULINK is used to 
model a NPC PV inverter, and the various fault models are 
simulated in the model. The simulation model is shown in Fig. 
5. The information obtained is used for the fault diagnosis of 
the system. Sampling is done to measure the 10 different 
states and it involves measuring the 2 characteristic variables 
of each state. These characteristics are the voltage U and 
current I. Therefore, the output voltage U and current I are 
collected in the 10 fault states by the simulation. The fault 
diagnosis of the PV inverter is mainly divided into two parts: 
the training model and the fault identification. 

A. Training Model 

(1) Put U and I, which are obtained by sampling, into the 
model as the observation sequence O. In other words, O = [U, 
I]. 

(2) Establish the HMM and the left-right model. Then 
determine the initial value of the model (the state number), 
the initial state probability, and the state transition matrix. 
Based on the circuit model, the implicit state is set to 4. The 

initial state probability is set to [1 0 0 0]  , and the state 

transition matrix A is set to: 

 
Fig. 4. Procedure of the GHMM. 

 
0 .5 0 .5 0 0

0 0 .5 0 .5 0

0 0 .5 0 .5 0

0 0 0 1

A

 
 
 
 
 
 

             (3) 

(3) Use a genetic algorithm to find the optimal initial value 
of B. The steps are as follows: 

(a) Coded representation: in the hidden Markov model, 
due to the left-right model, the state transitions can only be 
transferred from the low state to the high state. Since the 
initial system can only be in a low state, the initial state 
probability vector can be launched as follows: 

                                    (4) 

 
Because the selection of the initial value of B has the 

greatest impact on the model, it is necessary to optimize the 
initial value of B. First, the initial value of B is coded. The 
binary coding method is used in this paper. The binary 
encoding method is one of the most commonly used methods 
of encoding in a genetic algorithm, using {0,1}. The range of 
the initial value of B is from [0, 1]. The length of the 
parameter is 64. Therefore, it can produce 264 different codes 
in total. The corresponding relationship is as follows: 

 
The accuracy of the binary coding is: 

64

1

2 1
 


              (5) 

Assume an individual's code: 

64 63 62 2 1:X a a a a a           (6) 

The corresponding decoding formula is: 

1 i N 1, 1

0, 1i

i

i



  
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Fig. 5. Simulation model of the Three-Level NPC inverter. 
 

64
1

64
1

1
( 2 )

2 1
i

i
i

x a 



  
       (7) 

The corresponding decoding formula is: 

1

1 , 1 ,1
m

jk
k

b j N k M


      (8) 

(b) Fitness function: the fitness function can reflect the 
pros and cons of each chromosome. The traditional algorithm 

takes ( | )P O   as the optimization target. The chromosome 

that has the largest ( | )P O   is the best chromosome. 

According to the above, it is assumed that Q is a state 
sequence. The forward and backward algorithms calculate the 

sum of all state sequences' ( , | )P Q O  . However, the 

Viterbi algorithm calculates the ( ', | )P Q O   of the optimal 

path Q'. In terms of fault treatment, the range of 

( , | )P Q O   is very large, and the maximum value of 

( ', | )P Q O   is the only component that has an absolute 

advantage in all of ( , | )P Q O  . Therefore, ( ', | )P Q O   

is often used to replace ( , | )P Q O  . The recognition 

algorithm in this paper is the Viterbi algorithm. Thus, 

( ', | )P Q O   is taken as the optimization target. 

The fitness of individuals is represented by the 
log-likelihood of each training sample. 

( )( ) ln ( ( | ))kf P O         (9) 

( )kO  refers to the kth observation sequence, and ( )( | )kP O   

is obtained by the Viterbi algorithm. 
(c) Design of genetic operators: the genetic operators 

include the crossover operator and the mutation operator. In a 
certain sense, the crossover operator is equivalent to a local 
search operation, which produces two offspring near the 
parent generation. The mutation operator allows an individual 
to jump out of the current local search area. Therefore, the 
combination of the two exactly reflects the optimization of 
the genetic algorithm. In this paper, multi-point crossovers 
and multi-point mutations are used. 

(d) Termination criterion: in this paper, the maximum 
algorithmic iteration is set to 100. 

In the experiment, the performance of the genetic 
algorithm has a strong relationship with the setting of the 
control parameters, and the optimal performance of the 
algorithm often requires an optimal parameter setting. 
Therefore, it is necessary to have an optimizing search on Pc 
and Pm. In this paper, the C language is used to implement the 
above genetic algorithm, from which the optimal initial value 
of B is obtained. 

 (4) Use the Baum-Welch algorithm to iterate the initial 
parameters until the parameters converge to the set range. 

First a variable is defined as: 

1( , ) ( ,  | , )t t i t ji j P q q O            (10) 

This expresses, under the conditions of a given model 

  and observation sequence O, the probability of state i  

at time t, and state j  at time t+1.  



1020                         Journal of Power Electronics, Vol. 17, No. 4, July 2017 

 

1 1

1 1

1 1
1 1

( ) ( ) ( )
( , )

( | )

( ) ( ) ( )
          

( ) ( ) ( )

t ij j t t
t

t ij j t t

N N

t ij j t t
i j

i a b O j
i j

P O

i a b O j

i a b O j

 



 

 

 

 

 
 







 (11) 

Define ( )t i  as the conditional probability of state i  

at time t. 

1

( ) ( , )
N

t t
j

i i j 


              (12) 

Sum ( )t i  in t (from 1 to T-1). This yields a quantity 

that can be interpreted as the number of transfers from state 

i . 

The method for estimating parameters of the hidden 
Markov model includes the following: 

The revaluation formula of  : 

1

1

( ) ( )
( )

( ) ( )

t t
i N

t t
i

i i
i

i i

  
 



 

       (13) 

The revaluation formula of ija : 

1

1
1

1

1

1 1
1

1

1

( , )
                

( )

( ) ( ) ( ) / ( | )

( ) ( ) / ( | )

T

t
i

ij T

t
i

T

t ij j t t
i

T

t t
i

i j
A

i

i a b O j P O

i i P O





  

  










 


















     (14) 

The revaluation formula of ( )jb k : 

1

1

  1

1

( )
    ( )

( )

( ) ( ) / ( | )

( ) ( ) / ( | )

t k

t k

T

t O v
t

j T

t
t

T

t t
t

O v

T

t t
t

j
B k

j

i i P O

i i P O





  

  























       (15) 

In this study, multiple training samples are used to train 
the models. During model training, the output may differ 
under different control models or even under the same control 
model when the application is not the same. Therefore, the 
problem of model generalization should be considered when 
training a model to make the GHMM usable in practical 
applications. It is necessary to consider the common features 
of multiple datasets. In other words, it is necessary to use 

multiple training samples to train a model for fault diagnosis. 
For fault diagnosis, the output must be collected under the 
same fault conditions as that for the training samples.  

 

First, H training samples are defined, that is the 

observation sequences (1) (2) (3) ( ), , , , HO O O O . They may be 

relevant or statistically independent, therefore: 
 

(1) (2) (1) ( ) ( 1) (1)

(2) (3) (2) (1) ( ) (2)

( ) (1) ( ) ( 1) ( ) (1)

( | ) ( | ) ( | , ) ( | , )

( | ) ( | ) ( | , ) ( | , )

                                          

( | ) ( | ) ( | , ) ( | , )

H H

H

H H H H

P O P O P O O P O O O
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








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 
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Then the weight coefficient is introduced： 
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









 

 

 

 

  (17) 

 

    In formulas (14) and (15), the following formula is used 

to express ( | )P O  : 

( )

1

( | ) ( | )
H

h
h

h

P O P O  


        (18) 

The initial model is defined as ( , , )A B  , and the 

revaluation model is defined as ( , , )A B  . The Backward 

algorithm is used to calculate ( | )P O  , so that 

( | ) ( | )P O P O  . These calculations are then repeated 

using   instead of   until convergence. 

B. Fault Diagnosis 

After the training models are completed, the Viterbi 
algorithm is used to identify the diagnosis. The Viterbi 
algorithm is a method based on dynamic programming to 
determine the single optimal state sequence which has the 

largest ( | , )P Q O  . 

First, the variable ( )t i  is defined: 

1 2 1
1 2 1 2

, , ,
( ) max  [ , , , , , , | ]

t
t t i t

q q q
i P q q q S O O O 



 


  (19) 

This variable is at time t, along a path to reach the state Si. 
It generates the maximum probability of the observed {O1, 
O2 , ..., Ot}. 

1) Initialization: 

1 1( ) ( ), 1 ,  ( ) 0t i ii b O i N i         (20) 

2) Iterative calculation: 

1
1

( ) max[ ( ) ] ( )  ,  2 ,1t t ij j t
i N

j i a b O t T j N   
      (21) 

1
1

( ) arg max[ ( ) ]  ,   2 ,1t t ij
i N

j i a t T j N  
 

      (22) 

3) Final calculation: 
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Fig. 6. (a) Fault numbers 1-3; (b) fault numbers 4-7; (c) fault 
numbers 8-10. 

 

1
max[ ( )]T

i N
P i

 
             (23) 

Then it is possible to identify the diagnosis that has the 
largest P. 

C. Training and Diagnostic Simulation Results: 

With the convergence error set to 1×10-5, the training 
curves for the 10 fault states are shown in Fig. 6. 

The number of iterative steps required by the simulation 
under different fault models is shown in Table II. Each fault 
corresponds to the GHMM. Therefore, it can be seen that the 
training of the GHMM requires fewer iteration steps and has 
a fast convergence rate. 

Then the trained GHMM model is used to identify the 

measured signal and to calculate ( | , )iP Q O  , (1, ,10)i   . 

The model corresponding to the maximum value of  

TABLE II 
ITERATIVE STEPS 

Fault number Iterative steps Fault number Iterative steps 

1 20 6 28 

2 16 7 22 

3 19 8 29 

4 16 9 27 

5 20 10 8 

 
TABLE III 

OUTPUTS OF MODELS 
Fault 

number 

 
Model 

number 

1 2 3 4 5 

Number 1 13.01 -487.66 -86.12 -275.01 -205.51

Number 2 -169.32 4.13 -421.23 -1452.12 -210.12

Number 3 -3620.15 -41.76 -1.55 -542.13 -254.17

Number 4 -4402.29 -660.89 -43.12 -5.42 -3468.75

Number 5 -1542.14 -5015.06 -452.18 -2013.45 -2.74 

Number 6 -263.16 -3123.02 -212.09 -2111.71 -2419.89

Number 7 -473.45 -743.11 -311.45 -3710.14 -273.33

Number 8 -907.66 -763.82 -4211.74 -112.43 -172.02

Number 9 -3167.78 -513.69 -76.54 -542.27 -4475.67

Number 10 -616.01 -122.53 -816.01 -101.75 -163.08

Test result NO.1 NO.2 NO.3 NO.4 NO.5 

 
TABLE IV 

OUTPUTS OF MODELS 
Fault 

number 

 
Model 

number 

6 7 8 9 10 

Number 1 24.45 -347.12 -86.59 -721.45 -1.79 

Number 2 -143.75 -632.12 -711.42 -1010.46 -501.46

Number 3 -2109.34 -444.17 -501.92 -57.63 -1790.84

Number 4 -301.43 -500.58 -1420.46 -427.22 -314.78

Number 5 12.47 -2175.53 -817.62 -2936.34 -3075.44

Number 6 102.01 -142.35 -287.97 -1101.86 -200.13

Number 7 -743.85 -0.18 -2157.42 -340.17 -347.48

Number 8 43.47 -793.19 -5.64 -56.86 -1920.81

Number 9 -1435.02 -1032.75 -267.37 -15.44 -19.09 

Number 10 -39.47 -843.52 -142.09 -410.14 27.01 

Test result NO.6 NO.7 NO.8 NO.9 NO.10 

 
( | , )iP Q O   is the result. Test samples of 10 kinds of faults 

are taken into each model to calculate ( | , )iP Q O   and to 

find the largest one. Table III and Table IV show the outputs 
of each model. The red number is the largest value in each 
column. It is found that the model number accurately 
corresponds to the fault number. 

The test result is the model corresponding to the maximum 

( | , )iP Q O  , (1, ,10)i  . Therefore, the model trained 

by the GHMM can accurately identify the fault. 
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TABLE V 
DIAGNOSTIC RESULTS IN SIMULATION  

Fault 

number 

Times of 

diagnosis 

GHMM HMM 

Correct 

times  

Correct 

rate 

Correct 

times  

Correct 

rate 

1 100 100 100% 84 84% 

2 100 100 100% 91 91% 

3 100 100 100% 83 83% 

4 100 96 96% 93 93% 

5 100 94 94% 91 91% 

6 100 100 100% 89 89% 

7 100 100 100% 75 75% 

8 100 95 95% 88 88% 

9 100 95 95% 84 84% 

10 100 100 100% 85 85% 

 
To verify the validity of the circuit state identification 

using the GHMM, many experiments have been carried out in 
this paper and test samples have been selected in different 
states, for a total of 1000 groups (there are 100 test samples 
in each fault state).  

Table V shows diagnostic simulation results. The overall 
recognition has 98% accuracy, which is a good recognition 
performance. 

In this paper, the HMM is also used without a genetic 
algorithm to diagnose PV inverter faults. The diagnostic 
results are shown in Table V. The overall recognition of this 
algorithm has 86.3% accuracy. Therefore, it can be seen that 
the GHMM can realize the optimization of the initial value of 
B and effectively improve the recognition rate. 

To verify the advantages of using the GHMM in 
diagnosing PV inverter faults, it is compared with other 
traditional pattern recognition methods. In previous studies, 
traditional pattern recognition methods have been based on 
neural networks and SVMs (support vector machines). A 
neural network is an information processing system for 
simulating the biological nervous system. It can imitate the 
human brain in terms of learning, memory, recognition and 
many other functions. Since the development of neural 
networks, there have been many structural models and 
algorithms, of which the back propagation (BP) neural 
network is the most widely used. The BP neural network is a 
feed-forward network. The parameters of the BP neural 
network are shown in Table VI. 

A BP neural network is used to identify the 10 kinds of 
faults in the NPC PV inverter model. The results of the 
simulation are shown in Table VII. In this method, the choice 
of the number of hidden layer nodes considerably affects the 
results. In theory, the higher the number of hidden layer 
nodes, the higher the correct recognition rate becomes. Fault 
diagnosis using the BP neural network method has the 
following disadvantages [16]. First, the method often falls 
into a local minimum, possesses a slow convergence rate, and 
produces oscillation. Second, no explicit formulas or theories  

TABLE VI 
BP NEURAL NETWORK PARAMETERS 

Parameter Value 

Learning rate 0.02 

Maximum number of iterations 1000 

Target error of training 0.0001 

Neuron transfer function in the hidden layer logsig 

Neuron transfer function in the output layer trainlm 

 
TABLE VII 

BP NEURAL NETWORK RESULTS 

 
TABLE VIII 

SVM PARAMETERS 

Parameter Value 

Kernel function radial basis 

Parameter    0.0082334 

Error cost coefficient C 128 

Promotion strategy one to one vote 

 
TABLE IX 

SVM RESULTS 

Average number of iterations 657 
Average training time 75.46s 
Correct recognition rate 75.66% 

 
are available as a guide to determine the numbers of hidden 
layers and nodes. These are usually calculated based on 
experience. Therefore, this algorithm is flawed. This is why 
the BP method used in this study has a long training time and 
a very low correct rate. 

SVM is a new generation of learning algorithms based on 
the statistical learning theory. SVM is based on the principle 
of structural risk minimization. There are 3 problems in using 
SVM: (1) the selection of the kernel function; (2) the 
selection of the kernel function parameter and error cost 
coefficient C; (3) generalization for multi class problem 
identification. In this paper, a radial basis function has been 

chosen: 2( , ) exp( || || )K x y x y   , 0.0082334  , and 

the error cost coefficient C=128. Then, a one-to-one voting 
strategy is used. The parameters are shown in Table VIII. 

The results of the simulation are shown in Table IX. In this 
method, the selection of the kernel function and error cost 
coefficient C significantly influences the fault identification. 
The selection of these two parameters differs in different 
systems. When using SVM for fault diagnosis, satisfactory 
accuracy cannot be obtained if the method is not optimized 
[17], [18].  

Therefore, this method is also flawed. It is unstable and has 
poor robustness. This method has a lower recognition 
accuracy than the GHMM. 

Average number of iterations  422 
Average training time 30.01s 
Correct recognition rate 71.02% 



Combining a HMM with a Genetic Algorithm for the Fault Diagnosis of …                   1023            

 

 

(a) 
 

 

(b) 
 

 
 

 

Fig. 7. (a) Average iterative steps; (b) average training times; (c) 
correct recognition rate. 

 
To study the advantages and feasibility of applying the 

GHMM to the fault diagnosis of PV inverters, the above four 
different methods are compared and analyzed. Fig. 7 shows 
simulation data obtained by the different methods. 

The following conclusions can be obtained from the 
experimental data shown in Fig. 7. From Fig 7(a), the average 
number of steps of the GHMM and the HMM iterations are 
much lower than those of the other two methods. The neural 
network and SVM models need to be iterated several times to 
converge to set values. From Fig. 7(b), in terms of the 
training time, the SVM takes the longest time, followed by 
the neural network. While the GHMM and HMM require 
almost the same time, the training time of the HMM is the 
shortest. From Fig. 7(c), the correct recognition rate of the 
GHMM is significantly better than those of the other three 
methods. 

 

Fig. 8. Experimental setup. 
 

TABLE X 
SYSTEM PARAMETERS 

Parameter Value 

Ud 560 V 

C1,C2 2200 μF 

R-L load 15 Ω/2 mH 

 
Comparing the GHMM and the HMM, the number of 

iteration steps and training time are almost the same. 
However, the recognition rate of the former is obviously 
higher than that of the latter, reaching 98%. Therefore, fault 
diagnosis based on the GHMM method is feasible and more 
advantageous. 
 

IV. EXPERIMENTAL VERIFICATION 

The fault diagnosis of a photovoltaic inverter has been 
studied. A NPC inverter was selected as the research object, 
and its topology is shown in Fig. 1. Ten open-circuit faults 
are shown in Table 1. The experimental setup is shown in Fig. 
8. 
  The experimental setup was developed using a DSP 
TMS320F2812 to generate the PWM pulse command of the 
NPC inverter. The system parameters are shown in Table X. 
An open-circuit fault was generated by disconnecting the gate 
signal of the IGBT module. 

Owing to the symmetry of the NPC inverter, phase A was 
selected for the experimental analysis, and the other phases 
were similar. 

The output voltage U and current I were measured in each 
fault state with an oscilloscope, and the resulting 
experimental waveform are shown in Fig. 9. It can be seen  

(c) 
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  (h) 
 

 

  (j) 
 

Fig. 9. Experimental waveforms in each fault state. (a) Fault number 1. (b) Fault number 2. (c) Fault number 3. (d) Fault number 4. (e) 
Fault number 5. (f) Fault number 6. (g) Fault number 7. (h) Fault number 8. (i) Fault number 9. (j) Fault number 10. 
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Fig. 10. Iteration steps and training time. 
 

TABLE XI 
DIAGNOSTIC EXPERIMENTAL RESULTS 

Diagnosis 
method 

Fault  
number 

GHMM HMM 
Neural 

network 
SVM 

1 100% 84% 69% 79% 

2 100% 91% 80% 76% 

3 100% 84% 58% 65% 

4 96% 92% 75% 80% 

5 95% 90% 81% 83% 

6 100% 89% 65% 70% 

7 100% 83% 71% 73% 

8 96% 85% 80% 71% 

9 96% 85% 72% 84% 

10 100% 86% 76% 80% 

 
that the output voltage U and current I differed in each fault 
state. Because of this difference, the output voltage U and 
current I can be used as the characteristic value, and each 
model can be independently trained by the GHMM. The 
output voltage and current data for each of the fault states 
were received by the PC and DSP control board and 
subsequently read and displayed by MATLAB. Observation 
sequence O, which consisted of the sampled U and I, was the 
input of the model training with the GHMM. MATLAB 
software was used to read and process the sampled data for 
the model training and fault diagnosis. In the experiments, the 
algorithms were realized with MATLAB. First, a genetic 
algorithm was used to obtain the optimal initial value of B. 
Second, the Baum–Welch algorithm was used for the 
iterative training of the fault models. Finally, the Viterbi 
algorithm was used to identify faults. 

Model training and fault diagnosis were completed on a PC. 
The two traditional methods, namely, BP neural network and 
SVM, were also implemented with the MATLAB software. 

The number of iteration steps and training time for each of 
the methods are shown in Fig. 10. 

After training all of the models, the diagnostic experiment 
was conducted. Multiple diagnoses were performed for each 
fault to verify the effectiveness of inverter fault diagnosis by 
using the GHMM and to eliminate contingency. 100 samples  

 

 

Fig. 11. Correct recognition rate in the experiment. 

 
were selected in each fault condition, and a total of 10 × 
100 = 1000 test samples were used to carry out the fault 
diagnosis. The experimental results are shown in Table XI. 

Fig. 11 shows a comparison of the total correct recognition 
rates of the four methods in the experiment. The experimental 
results indicated that the simulation results were correct. It 
was faster and more accurate to use the GHMM in diagnosing 
inverter faults. 

Thus, the feasibility and advantages of the GHMM have 
been proven. 

 

V. CONCLUSIONS 

As a method based on the statistical pattern recognition 
theory, the HMM can handle the dynamic process well. 
Compared with traditional fault diagnosis methods, the HMM 
can monitor and diagnose faults in the dynamic process of a 
system, and determine the faults in time. The classical 
training algorithm (Baum-Welch) in the HMM has a fatal 
flaw, since the final solution depends on the initial value. 
Therefore, it is often only a local optimum. Due to the genetic 
algorithm’s use of a global search based on population, the 
chance of obtaining the globally optimal solution is much 
greater. 

In this paper, the GHMM is introduced for the fault diagnosis 
of PV inverters. First a genetic algorithm is used to search for the 
optimal initial value of B. Then the Baum-Welch algorithm is 
used to train the model. Finally, the Viterbi algorithm is used to 
identify faults, and the improved fault recognition rate is 
obtained. The simulation and experimental results show that it is 
feasible and effective to use the GHMM to diagnose the faults of 
PV inverters. Compared with the traditional HMM, the 
recognition rate of the GHMM is much higher. At the same time, 
in terms of the number of iterations, the training time and the 
correct recognition rate, the GHMM is significantly better than 
the neural network and SVM models. As a global optimization 
method, the GHMM can deal with dynamic processes very well. 
This is especially useful because the working mode of the PV 
inverter circuit is nonlinear. Therefore, it is of great theoretical 
and practical value to combine a genetic algorithm with the 
HMM for PV inverter fault diagnosis. 
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