• Title/Summary/Keyword: Training Algorithm

Search Result 1,881, Processing Time 0.04 seconds

Performance Improvement of Nearest-neighbor Classification Learning through Prototype Selections (프로토타입 선택을 이용한 최근접 분류 학습의 성능 개선)

  • Hwang, Doo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Nearest-neighbor classification predicts the class of an input data with the most frequent class among the near training data of the input data. Even though nearest-neighbor classification doesn't have a training stage, all of the training data are necessary in a predictive stage and the generalization performance depends on the quality of training data. Therefore, as the training data size increase, a nearest-neighbor classification requires the large amount of memory and the large computation time in prediction. In this paper, we propose a prototype selection algorithm that predicts the class of test data with the new set of prototypes which are near-boundary training data. Based on Tomek links and distance metric, the proposed algorithm selects boundary data and decides whether the selected data is added to the set of prototypes by considering classes and distance relationships. In the experiments, the number of prototypes is much smaller than the size of original training data and we takes advantages of storage reduction and fast prediction in a nearest-neighbor classification.

A new learning algorithm for multilayer neural networks (새로운 다층 신경망 학습 알고리즘)

  • 고진욱;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1285-1288
    • /
    • 1998
  • In this paper, we propose a new learning algorithm for multilayer neural networks. In the error backpropagation that is widely used for training multilayer neural networks, weights are adjusted to reduce the error function that is sum of squared error for all the neurons in the output layer of the network. In the proposed learning algorithm, we consider each output of the output layer as a function of weights and adjust the weights directly so that the output neurons produce the desired outputs. Experiments show that the proposed algorithm outperforms the backpropagation learning algorithm.

  • PDF

Implementation of Speed Sensorless Induction Motor drives by Fast Learning Neural Network using RLS Approach

  • Kim, Yoon-Ho;Kook, Yoon-Sang
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.293-297
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS based on Neural Network Training Algorithm. The proposed algorithm has just the time-varying learning rate, while the wellknown back-propagation algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The theoretical analysis and experimental results to verify the effectiveness of the proposed control strategy are described.

  • PDF

Unsupervised Semantic Role Labeling for Korean Adverbial Case (비지도 학습을 기반으로 한 한국어 부사격의 의미역 결정)

  • Kim, Byoung-Soo;Lee, Yong-Hun;Lee, Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.2
    • /
    • pp.112-122
    • /
    • 2007
  • Training a statistical model for semantic role labeling requires a large amount of manually tagged corpus. However. such corpus does not exist for Korean and constructing one from scratch is a very long and tedious job. This paper suggests a modified algorithm of self-training, an unsupervised algorithm, which trains a semantic role labeling model from any raw corpora. For initial training, a small tagged corpus is automatically constructed iron case frames in Sejong Electronic Dictionary. Using the corpus, a probabilistic model is trained incrementally, which achieves 83.00% of accuracy in 4 selected adverbial cases.

Evaluation and Analysis of VR Content Dementia Prevention Training based on Musculoskeletal Motion Tracking (근골격계 동작 추적 기반 VR 콘텐츠 치매 예방 훈련 평가 및 분석)

  • Lee, Min-Tae;Youn, Jae-Hong;Kim, Eun-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • Recently, the increase in the elderly population due to an aging society has led to a relative increase in senile diseases such as vascular dementia or Alzheimer's disease, and the social burden for rehabilitation has increased. In addition, studies have been conducted for the risk assessment and prevention of musculoskeletal disorders. The purpose of this study is to suggest a system that can be used to help with dementia prevention training by tracking the movement of motion and virtual reality contents for the risk factors of musculoskeletal disorders of the elderly. We propose a training method for preventing dementia through musculoskeletal motion analysis algorithm and virtual reality content. Through motion recognition algorithm based on motion region design, we will track and analyze the moving radius of the target joint. The purpose of this study is to calculate and evaluate scores based on the time to accomplish the goals on virtual reality contents for the prevention of musculoskeletal disorders and the support of dementia prevention training, and the degree of difficulty, and to analyze the correlation between the results of performing K-MMSE and VR contents.

Supervised Competitive Learning Neural Network with Flexible Output Layer

  • Cho, Seong-won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.675-679
    • /
    • 2001
  • In this paper, we present a new competitive learning algorithm called Dynamic Competitive Learning (DCL). DCL is a supervised learning method that dynamically generates output neurons and initializes automatically the weight vectors from training patterns. It introduces a new parameter called LOG (Limit of Grade) to decide whether an output neuron is created or not. If the class of at least one among the LOG number of nearest output neurons is the same as the class of the present training pattern, then DCL adjusts the weight vector associated with the output neuron to learn the pattern. If the classes of all the nearest output neurons are different from the class of the training pattern, a new output neuron is created and the given training pattern is used to initialize the weight vector of the created neuron. The proposed method is significantly different from the previous competitive learning algorithms in the point that the selected neuron for learning is not limited only to the winner and the output neurons are dynamically generated during the learning process. In addition, the proposed algorithm has a small number of parameters, which are easy to be determined and applied to real-world problems. Experimental results for pattern recognition of remote sensing data and handwritten numeral data indicate the superiority of DCL in comparison to the conventional competitive learning methods.

  • PDF

Tree Based Cluster Analysis Using Reference Data (배경자료를 이용한 나무구조의 군집분석)

  • 최대우;구자용;최용석
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.535-545
    • /
    • 2004
  • The clustering method suggested in this paper produces clusters based on the 'rules of variables' by merging the 'training' and the identically structured reference data and then by filtering it to obtain the clusters of the 'training data' through the use of the 'tree classification model'. The reference dataset is generated by spatially contrasting it to the 'training data' through the 'reverse arcing' algorithm to effectively identify the clusters. The strength of this method is that it can be applied even to the mixture of continuous and discrete types of 'training data' and the performance of this algorithm is illustrated by applying it to the simulated data as well as to the actual data.

Imbalanced SVM-Based Anomaly Detection Algorithm for Imbalanced Training Datasets

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.621-631
    • /
    • 2017
  • Abnormal samples are usually difficult to obtain in production systems, resulting in imbalanced training sample sets. Namely, the number of positive samples is far less than the number of negative samples. Traditional Support Vector Machine (SVM)-based anomaly detection algorithms perform poorly for highly imbalanced datasets: the learned classification hyperplane skews toward the positive samples, resulting in a high false-negative rate. This article proposes a new imbalanced SVM (termed ImSVM)-based anomaly detection algorithm, which assigns a different weight for each positive support vector in the decision function. ImSVM adjusts the learned classification hyperplane to make the decision function achieve a maximum GMean measure value on the dataset. The above problem is converted into an unconstrained optimization problem to search the optimal weight vector. Experiments are carried out on both Cloud datasets and Knowledge Discovery and Data Mining datasets to evaluate ImSVM. Highly imbalanced training sample sets are constructed. The experimental results show that ImSVM outperforms over-sampling techniques and several existing imbalanced SVM-based techniques.

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Kim, Moon-Hwan;hwang, suen ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.

  • PDF

Improved Automatic Lipreading by Multiobjective Optimization of Hidden Markov Models (은닉 마르코프 모델의 다목적함수 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This paper proposes a new multiobjective optimization method for discriminative training of hidden Markov models (HMMs) used as the recognizer for automatic lipreading. While the conventional Baum-Welch algorithm for training HMMs aims at maximizing the probability of the data of a class from the corresponding HMM, we define a new training criterion composed of two minimization objectives and develop a global optimization method of the criterion based on simulated annealing. The result of a speaker-dependent recognition experiment shows that the proposed method improves performance by the relative error reduction rate of about 8% in comparison to the Baum-Welch algorithm.