• Title/Summary/Keyword: Train weight

Search Result 267, Processing Time 0.023 seconds

A Study on Train Braking Performance Assessment Methods Using Braked Weight Percentage (제동중량비율을 이용한 도시철도차량 제동성능 평가방법 연구)

  • Choi, Don-Bum;Lee, Kang-Mi;Yoon, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.545-551
    • /
    • 2016
  • In this study, we evaluate the braking performance of an urban railway vehicle to verify its basic safety condition. The braking performance evaluation methods, deceleration measurement and braked weight percentage, were compared for trains with different numbers of cars, in order to assess the advantages of each method and their compatibility. With a probabilistic braking model, the effect of the adhesion coefficient distribution was analyzed in accordance with the train composition. A train with many cars has a narrower deceleration distribution width than one with few cars. The braked weight percentage method is expected to be useful in the design of train signal systems, because it allows the braking distance to be calculated for various initial brake velocities. The deceleration distribution model and its results are expected to be useful as a basis for precise train signal design.

The Analysis of Acceleration Performance Resulted by Weight Variation for HEMU-430X high-speed train the Korea's next-generation electric multiple unit train (차세대 동력분산형 고속열차(HEMU-430X)의 중량변화에 따른 가속능력 분석)

  • Choi, Dooho;Cho, Hong-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3731-3735
    • /
    • 2015
  • This study reports the relationship between rollingstock weight and acceleration performance for HEMU-430X, the first electric multiple unit developed in Korea. While maintaining the consumed power, the total train weight was deliberately varied by 2%, by adding and removing weights, and the it was shown that the lighter train was found to have higher acceleration performance and hence better suited for maximum speed tests below the speed of 413km/h. According to the power consumption analysis based on the velocity data collected per 0.1 second, the balanced speed, when the traction force and air resistance become equal, was determined to be 419km/h for HEMU-430X, which is in agreement with tested result. It is expected that the analyses in this study will be utilized for the speed tests in the future.

A Design of Brake Control System for Electrical Multiple Unit (전동차 제동제어장치 설계)

  • 이우동;최규형
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.151-156
    • /
    • 2000
  • The brake system is important to stop train safely. The train is sloped by regenerative brake and pneumatic brake which are continuously blended at service brake. When service is applied to train, it is controlled by train weight and brake command. The jerk limitation function is applied for impulseless smoothing braking. All brake applications in service condition have a function of the variable load control to keep the braking effort in proportion to each car load. All of control function are performed by brake controller. Therefore, we will propose the design of brake control system in order to control efficiently

  • PDF

MECHANICAL POWER SYSTEM OF TONGCHEON-UI, AN ASTRONOMICAL CLOCK MADE BY HONG, DAE-YONG (홍대용이 제작한 천문시계 통천의의 기계동력시스템)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.43-57
    • /
    • 2020
  • Hong, Dae-Yong manufactured the Tongcheon-ui (Pan-celestial Armillary Sphere) with cooperating clock researcher Na, Kyeong-Jeok, and its craftsman An, Cheo-In, in Naju of Jeolla Province in 1760 ~ 1762. Tongcheon-ui is a kind of astronomical clock with an armillary sphere which is rotated by the force generated by a lantern clock's weight. In our study, we examine the lantern clock model of Tongcheon-ui through its description of the articles written by Hong himself. As his description, however, did not explain the detail of the mechanical process of the lantern clock, we investigate the remains of lantern clocks in the possession of Korea University Museum and Seoul National University Museum. Comparing with the clocks of these museums, we designed the lantern clock model of Tongcheon-ui which measures 115 mm (L) × 115 mm (W) × 307 mm (H). This model has used the structure of the striking train imitated from the Korea University Museum artifact and is also regulated by a foliot escapement which is connected to a going train for timekeeping. The orientation of the rotation of the going train and the striking train of our model makes a difference with the remains of both university museums. That is, on the rotation axis of the first gear set of Tongcheon-ui's lantern clock, the going and the striking trains take on a counterclockwise and clockwise direction, respectively. The weight of 6.4 kg makes a force driving these two trains to stick to the pulley on the twine pulling across two spike gears corresponding to the going train and the striking train. This weight below the pulley may travel down about 560 mm per day. We conclude that the mechanical system of Tongcheon-ui's lantern clock is slightly different from the Japanese style.

Behavior of Concrete Track Girder for Magnetic Levitation Train (자기부상열차구조물에 있어서 콘크리트선로거더의 거동)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.686-691
    • /
    • 2005
  • State of the art and current issues related with the RC and PSC structure system for the magnetic levitation train were investigated. The German and China magnetic levitation train adopted a new kind of a structure to enable high-speed transportation, which allows the use of the space over a ground. The loading from magnetic levitation trains is light-weight compared with a regular train due to load distribution to a supporting structure. Therefore, the magnetic levitation train is considered an economical and efficient transportation system, and is also an environmentally-sustainable structure. In this paper, the structural design and construction technology specific to a magnetic levitation train were discussed, and structural considerations related with an actual operation of the train were pointed out. In addition, the future research area of a magnetic levitation train was proposed

  • PDF

Parametric Study on 3-way Switch Design Considering Levitation Stability of Maglev Train (자기부상열차의 부상안정성을 고려한 3방향 분기기의 설계 파라미터 연구)

  • Lee, Younghak;Han, Jong-Boo;Lim, Jaewon;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • It is essential to lighten the weight of switch girders in order to reduce their costs of manufacturing and make it easier to use them in construction. Lightening the weight of switch is also important to the Maglev 3-way switches system, however, the design variables should be considered very carefully if lightening is to be applied to the system, because these variables are vitally related to the levitation stability. Because Urban Maglev trains have a structure in which train bogie wraps around the guiderail, the adjustment of a girder's height is a possible way to reduce the weight. The safety of the application of this concept is ensured by repeated experiments in a test bed, however, due to a lack of space and budget limits, the design parametric study for the system model can substitute for actual application. The purpose of this paper is to study the design parameters that are concerned with levitation stability while a Maglev train is running on the Maglev 3-way system depending on the weight of the switch girders. In this study, switch girder weight is reduced by adjustment of girder height and girders are and modeled as a flexible body. The effect of the adjustment of girder height on the levitation stability can be analyzed by comparing the velocity of the train when it passes the switch girders, with the lateral gap, and the levitation gap which are obtained from the co-simulation of the Maglev train's dynamics model and flexible switching system. The results of this research will be used to design a Maglev switch.

A Numerical Study on Application of the Integrated Track System for a Magnetic Railway (자기부상철도 일체형 궤도시스템 적용을 위한 해석적 연구)

  • Ham, Junsu;Jung, Sub;Hwang, Won-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • The load of a maglev train, which is being considered a future transportation, is uniformly loaded on a levitated surface of a rail unlike a typical train because the maglev train is magnetically levitated and propelled. In addition, the driving performance is superior since the maglev train doesn't directly contact the railway. A integrated track system, to which a sleeper is installed toward a longitudinal direction instead of a perpendicular direction, is suggested, considering this loading characteristic. The longitudinal sleeper of this system is expected to contribute to stiffness increase of a bridge and weight-reduction of a girder. In this study, the structural characteristics of proposed and typical systems have been numerically compared and analyzed. In addition, the improvement of the integrated system has been proposed.

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

Study on the Optimal Design for Design Parameter of Planetary Gear Train Using Simulated Annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 설계요소 최적화에 관한 연구)

  • Lee Geun Ho;Choi Young Hyuk;Chong Tae Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on miniaturization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study f3r the planetary gear train required long life estimation. In this work being considered life, strength, interference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algerian for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used far optimal design method.

Prediction of Interior Noise for Tilting Train by using Transmission Loss (투과손실을 이용한 틸팅차량의 실내소음 예측)

  • Kim, Jae-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.405-408
    • /
    • 2007
  • In this paper, we describe the analysis of interior noise for tilting train that is being developed in Korea. Tilting train is made of composite material to reduce the car body's weight and attached a self-steering system on bogie to improve curving performance. However, the acoustic performance (Transmission Loss) of such material is worse than the materials of conventional train, such as aluminum, steel and so on. Therefore, we measure the transmission loss of side wall/floor of tiling train and predict the interior noise for tilting train using its measuring results.